UNIVERSITY OF TORONTO
Faculty of Arts and Science
Term test \#1
CSC 236H1
Duration - 50 minutes

Last Name: \qquad
First Name: \qquad

Do not turn this page until you have received the signal to start. (In the meantime, please fill out the identification section above, and read the instructions below.)

This test consists of 3 questions on 4 pages (including this one). When you receive the signal to start, please make sure that your copy of the test is complete.

Please answer questions in the space provided. You will earn 20% for any question you leave blank or write "I cannot answer this question," on.

Question 1. [10 MARKS]

Consider the function:

$$
a(n)= \begin{cases}1 & \text { if } n=1 \\ {[a(\lfloor\sqrt{n}\rfloor)]^{2}+2 a(\lfloor\sqrt{n}\rfloor)} & \text { if } n>1\end{cases}
$$

Use any reasonable variant of Complete Induction to prove that $a(n)$ is divisible by 5 for all natural numbers $n \geq 4$. For clarity, be sure to:

1. Label your Inductive Hypothesis (IH)
2. When you use your IH, mention which numbers you are using it for, and why the IH may be used, e.g. "...since both $n-1$ and $n-2$ are between..."

Sample solution: Define $P(n)$: "There is some natural number k such that $a(n)=5 k$." I prove that for all natural numbers n greater than $3, P(n)$ holds.

Inductive step: Assume n is a generic natural number greater than 3 , and that for all $4 \leq k<n, P(k)$ holds (Inductive Hypothesis, IH). I need to show $P(n)$ follows.
For convenience, I verify that $a(2)=a(3)=3$.
Case $0, n \in\{4,5, \ldots, 8\}$: Then

$$
\begin{aligned}
a_{n} & =a(2)^{2}+2 a(2) \quad \# \text { since }\lfloor\sqrt{n}\rfloor=2 \\
& =3^{2}+6=15 \quad \# \text { since } a_{2}=3
\end{aligned}
$$

So $P(n)$ holds in this case.
Case 1, $n \in\{9,10, \ldots, 15\}$: Then

$$
\begin{aligned}
a_{n} & =a(3)^{2}+2 a(3) \quad \# \text { since }\lfloor\sqrt{n}\rfloor=3 \\
& =3^{2}+6=15 \quad \# \text { since } a_{3}=3
\end{aligned}
$$

So $P(n)$ holds in this case.
Case 2, $n \geq 16$: Then $4 \leq\lfloor\sqrt{n}\rfloor<n$, so

$$
\begin{aligned}
a(n) & =a(\lfloor\sqrt{n}\rfloor)^{2}+2 a(\lfloor\sqrt{n}\rfloor) \quad \# \text { since } n>1 \\
& =(5 k)^{2}+2(5 k) \text { for some } k \in \mathbb{N} \quad \# \mathrm{IH}, \text { since } 4 \leq\lfloor\sqrt{n}\rfloor<n \\
& =5\left(5 k^{2}+2 k\right)=5 k_{1}, k_{1} \in \mathbb{N} \quad \# \text { since } \mathbb{N} \text { closed under }+, \times
\end{aligned}
$$

So $P(n)$ holds in this case.
In each possible case, $P(n)$ holds, so $[\forall k \in\{4, \ldots, n-1\}, P(k)] \rightarrow P(n)$.
I conclude, by Complete Induction, that $\forall n \in \mathbb{N}-\{0,1,2,3\}, P(n)$.
\qquad

Question 2. [10 MARKs]

Use any reasonable variant of Simple Induction on i to prove that if m is a natural number greater than 1 , then for each natural number $i:(m-1)^{2 i}=m k+1$, for some natural number k.

Sample solution: Define $P(i):(m-1)^{2 i}=m k+1$, for some natural number k. I prove that if m is a natural number greater than 1 , then $\forall i \in \mathbb{N}, P(i)$, using Simple Induction.
Assume m is a typical natural number greater than 1.
Base case: If $i=0$, then $(m-1)^{2 i}=1=0 \times m+1$, and $0 \in \mathbb{N}$, so $P(0)$ holds.
Inductive step: Assume i is a typical natural number, and that $P(i)$ holds, that is $(m-1)^{2 i}=m k$ for some natural number k (Inductive Hypothesis, IH). I must show that $P(i+1)$ follows, that is $(m-1)^{2(i+1)}=m k_{1}$ for some $k_{1} \in \mathbb{N}$.
I have:

$$
\begin{aligned}
(m-1)^{2(i+1)}= & (m-1)^{2 i} \times(m-1)^{2} \quad \text { \# factoring... } \\
= & (k m+1)\left(m^{2}-2 m+1\right), \text { some } k \in \mathbb{N} \\
& \quad \text { \# by IH we have } P(i), \text { and expanding }(m-1)^{2} \\
= & (k m+1)(m(m-2)+1=m((m-2)(k m+1)+k)+1 \\
= & k_{1} m+1, \text { where } k_{1} \in \mathbb{N} \\
& \quad \# \mathbb{N} \text { closed under }+, \times \text { and } m-2 \geq 0 \text { since } m \geq 2 \\
& \quad \# \text { so }(m-2)(k m+1)+k \in \mathbb{N}
\end{aligned}
$$

So $P(i+1)$ follows from $P(i)$.
I conclude, by Simple Induction, $\forall \in \mathbb{N}, P(i)$
Since m is a generic natural number greater than 1 , I have shown that for all natural numbers greater than $1, \forall \in \mathbb{N}, P(i)$.
\qquad

Question 3. [10 MARKs]

Define the set of arithmetic expressions, \mathcal{E}, as the smallest set such that:

1. Variables x, y, and z are elements of \mathcal{E}
2. If e_{1} and e_{2} are elements of \mathcal{E}, then so are $\left[e_{1}+e_{2}\right],\left[e_{1}-e_{2}\right],\left[e_{1} \times e_{2}\right]$, and $\left[e_{1} \div e_{2}\right]$.

For example, under this definition $x, y,[x+x]$, and $[x+[y-x]]$ are elements of \mathcal{E}.
Define $V(e)$, the number of variables in $e, O(e)$, the number of operators in e, and $B(e)$, the number of brackets in e by:

1. If $e \in\{x, y, z\}$, then $V(e)=1, O(e)=B(e)=0$.
2. If $e_{1}, e_{2} \in \mathcal{E}$, and $e=\left[e_{1} \odot e_{2}\right]$, where $\odot \in\{+, \times,-, \div\}$, then

$$
\begin{aligned}
V(e) & =V\left(e_{1}\right)+V\left(e_{2}\right) \\
O(e) & =O\left(e_{1}\right)+O\left(e_{2}\right)+1 \\
B(e) & =B\left(e_{1}\right)+B\left(e_{2}\right)+2
\end{aligned}
$$

Use Structural Induction to prove that, for all $e \in \mathcal{E} B(e)=V(e)+O(e)-1$. Be sure to note where you use your induction hypothesis, and why you are justified in using it.

Sample solution: Define $P(e): B(e)=V(e)+O(e)-1$. I will prove $\forall e \in \mathcal{E}, P(e)$, using Structural Induction.
Base case: If $e \in\{x, y, z\}$, then $B(e)=0, V(e)=1$, and $O(e)=0$, from the definition, so $B(e)=0=$ $1+0-1=V(e)+O(e)-1$, as claimed. So $P(e)$ holds for the basis.

Inductive step: Assume e_{1} and e_{2} are typical elements of \mathcal{E} and that $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ are true (Inductive Hypothesis, IH). I must show that this implies $P\left(\left[e_{1} \odot e_{2}\right]\right)$, for $\odot \in\{+, \times,-, \div\}$.
I have:

$$
\begin{aligned}
B\left(\left[e_{1} \odot e_{2}\right]\right) & =B\left(e_{1}\right)+B\left(e_{2}\right)+2 \quad \text { \# from definition of } V(e) \\
& =V\left(e_{1}\right)+O\left(e_{1}\right)-1+V\left(e_{2}\right)+O\left(e_{2}\right)-1+2 \quad \text { \# by IH, since I assumed } P\left(e_{1}\right) \text { and } P\left(e_{2}\right) \\
& =\left[V\left(e_{1}\right)+V\left(e_{2}\right)\right]+\left[O\left(e_{1}\right)+O\left(e_{2}\right)+1\right]-1 \quad \text { \# regroup... } \\
& =V\left(\left[e_{1} \odot e_{2}\right]\right)+O\left(\left[e_{1} \odot e_{2}\right]\right)-1 \quad \# \text { by definitions of } V(e) \text { and } O(e)
\end{aligned}
$$

So $B\left(\left[e_{1} \odot e_{2}\right]\right)=V\left(\left[e_{1} \odot e_{2}\right]\right)+O\left(\left[e_{1} \odot e_{2}\right]\right)-1$, that is $P\left(\left[e_{1} \odot e_{2}\right]\right)$.
I conclude, by Structural Induction, $\forall e \in \mathcal{E}, P(e)$.
\# 1: \qquad / 10
\# 2: \qquad $/ 10$
\# 3: \qquad /10

TOTAL: \qquad /30
\qquad

