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Question 1. [10 marks]

Consider the function:

a(n) =

8<
:
1 if n = 1�
a(bpnc)�2 + 2a(bpnc) if n > 1

Use any reasonable variant of Complete Induction to prove that a(n) is divisible by 5 for all natural

numbers n � 4. For clarity, be sure to:

1. Label your Inductive Hypothesis (IH)

2. When you use your IH, mention which numbers you are using it for, and why the IH may be used,

e.g. \...since both n� 1 and n� 2 are between..."

Sample solution: De�ne P (n) : \There is some natural number k such that a(n) = 5k." I prove that for all

natural numbers n greater than 3, P (n) holds.

Inductive step: Assume n is a generic natural number greater than 3, and that for all 4 � k < n; P (k) holds

(Inductive Hypothesis, IH). I need to show P (n) follows.

For convenience, I verify that a(2) = a(3) = 3.

Case 0, n 2 f4; 5; : : : ; 8g: Then

an = a(2)2 + 2a(2) # since bpnc = 2

= 32 + 6 = 15 # since a2 = 3

So P (n) holds in this case.

Case 1, n 2 f9; 10; : : : ; 15g: Then

an = a(3)2 + 2a(3) # since bpnc = 3

= 32 + 6 = 15 # since a3 = 3

So P (n) holds in this case.

Case 2, n � 16: Then 4 � bpnc < n, so

a(n) = a(bpnc)2 + 2a(bpnc) # since n > 1

= (5k)2 + 2(5k) for some k 2 N # IH, since 4 � bpnc < n

= 5(5k2 + 2k) = 5k1; k1 2 N # since N closed under +;�

So P (n) holds in this case.

In each possible case, P (n) holds, so [8k 2 f4; : : : ; n� 1g; P (k)]! P (n).

I conclude, by Complete Induction, that 8n 2 N� f0; 1; 2; 3g; P (n).
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Question 2. [10 marks]

Use any reasonable variant of Simple Induction on i to prove that if m is a natural number greater than

1, then for each natural number i: (m� 1)2i = mk + 1, for some natural number k.

Sample solution: De�ne P (i) : (m�1)2i = mk+1, for some natural number k. I prove that if m is a natural

number greater than 1, then 8i 2 N; P (i), using Simple Induction.

Assume m is a typical natural number greater than 1.

Base case: If i = 0, then (m� 1)2i = 1 = 0�m+ 1, and 0 2 N, so P (0) holds.
Inductive step: Assume i is a typical natural number, and that P (i) holds, that is (m� 1)2i = mk for

some natural number k (Inductive Hypothesis, IH). I must show that P (i + 1) follows, that is

(m� 1)2(i+1) = mk1 for some k1 2 N.
I have:

(m� 1)2(i+1) = (m� 1)2i � (m� 1)2 # factoring. . .

= (km+ 1)(m2 � 2m+ 1); some k 2 N
# by IH we have P (i), and expanding (m� 1)2

= (km+ 1)(m(m� 2) + 1 = m ((m� 2)(km+ 1) + k) + 1

= k1m+ 1; where k1 2 N
#N closed under +;� and m� 2 � 0 since m � 2

# so (m� 2)(km+ 1) + k 2 N

So P (i+ 1) follows from P (i).

I conclude, by Simple Induction, 8 2 N; P (i)

Sincem is a generic natural number greater than 1, I have shown that for all natural numbers greater

than 1, 8 2 N; P (i).
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Question 3. [10 marks]

De�ne the set of arithmetic expressions, E , as the smallest set such that:

1. Variables x; y; and z are elements of E
2. If e1 and e2 are elements of E , then so are [e1 + e2]; [e1 � e2]; [e1 � e2]; and [e1 � e2].

For example, under this de�nition x; y; [x+ x], and [x+ [y � x]] are elements of E .
De�ne V (e), the number of variables in e, O(e), the number of operators in e, and B(e), the number of

brackets in e by:

1. If e 2 fx; y; zg, then V (e) = 1, O(e) = B(e) = 0.

2. If e1; e2 2 E , and e = [e1 � e2], where � 2 f+;�;�;�g, then
V (e) = V (e1) + V (e2)

O(e) = O(e1) +O(e2) + 1

B(e) = B(e1) +B(e2) + 2

Use Structural Induction to prove that, for all e 2 E B(e) = V (e) + O(e)� 1. Be sure to note where you

use your induction hypothesis, and why you are justi�ed in using it.

Sample solution: De�ne P (e) : B(e) = V (e)+O(e)�1. I will prove 8e 2 E ; P (e), using Structural Induction.
Base case: If e 2 fx; y; zg, then B(e) = 0, V (e) = 1, and O(e) = 0, from the de�nition, so B(e) = 0 =

1 + 0� 1 = V (e) +O(e)� 1, as claimed. So P (e) holds for the basis.

Inductive step: Assume e1 and e2 are typical elements of E and that P (e1) and P (e2) are true (Inductive

Hypothesis, IH). I must show that this implies P ([e1 � e2]), for � 2 f+;�;�;�g.
I have:

B([e1 � e2]) = B(e1) +B(e2) + 2 # from de�nition of V (e)

= V (e1) +O(e1)� 1 + V (e2) +O(e2)� 1 + 2 # by IH, since I assumed P (e1) and P (e2)

= [V (e1) + V (e2)] + [O(e1) +O(e2) + 1]� 1 # regroup. . .

= V ([e1 � e2]) +O([e1 � e2])� 1 # by de�nitions of V (e) and O(e)

So B([e1 � e2]) = V ([e1 � e2]) +O([e1 � e2])� 1, that is P ([e1 � e2]).

I conclude, by Structural Induction, 8e 2 E ; P (e).

# 1: /10

# 2: /10

# 3: /10

TOTAL: /30
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