
CSC207/B07H1F 2013 Midterm Test
Duration — 50 minutes
Aids allowed: none

Student Number:

Last Name: First Name:

Lecture Section: Daytime

Do not turn this page until you have received the signal to start.

(Please fill out the identification section above, write your name on the
back of the test, and read the instructions below.)

Good Luck!

This midterm consists of 3 questions on 8 pages (including this one). When

you receive the signal to start, please make sure that your copy is complete.

• Legibly write your name and student number on this page. Legibly
write your name on the back page of this exam.

• If you use any space for rough work, indicate clearly what you want
marked.

• In all programming questions you may assume all input is valid.

• You do not need to write Javadocs.

• You may use a pencil; however, work written in pencil will not be
considered for remarking.

1: /10

2: / 8

3: /23

TOTAL: /41

Total Pages = 8 Page 1 over. . .

CSC207/B07 Midterm — Solutions 23 October 2013

Question 1. [10 marks]

Alice and Bob are interested in poetry, and they put together a collection of poems with one word
per line by L. Eigner. They share a subversion repository located at http://poetry.utoronto.
ca/eigner. They begin with two files in the repository, eigner.txt and 14march1983.txt, with
the following contents:

eigner.txt

poems
with
but
one
word
per
line

14mar1983.txt

sky
clouds
far
snowy
corners

Q: Bob just bought a new laptop and wants to get a local copy of the repository on
it. What command does he need to execute?

svn checkout http://poetry.utoronto.ca/eigner

Suppose now that Alice creates a new file in her local copy:

7nov1989.txt

tree
phonepole
bird

Q: What sequence of command(s) do Alice and Bob need to issue so that Bob also
has a copy of this file? For each command, make sure to state who needs to execute
it, Bob or Alice.

Alice: svn add 7nov1989.txt

Alice: svn commit -m "Adding another poem"

Bob: svn update

Now that Alice and Bob share all three files, they both decide to edit the file 7nov1989.txt as
follows:

Alice:

7nov1989.txt

tree
Phonepoles
bird

Bob:

7nov1989.txt

tree
phone pole
bird

Total Pages = 8 Page 2 over. . .

CSC207/B07 Midterm — Solutions 23 October 2013

Suppose Alice now executes this command:

svn commit -m "fixed a typo"

Q: What is the second line of the file 7nov1989.txt in
• Alice’s copy Phonepoles

• Bob’s copy phone pole

• the latest version in the repository Phonepoles

Suppose Bob now executes this command:

svn commit -m "revised line 2"

Q: What is the second line of the file 7nov1989.txt in
• Alice’s copy Phonepoles

• Bob’s copy phone pole

• the latest version in the repository Phonepoles

Q: Give the sequence of steps that Alice and Bob should take to make sure they
both have the same version of all three files, with "phone pole" as the second line of
7nov1989.txt.

[These can be described in English, rather than by listing commands.]

Bob: svn update

Bob: resolve conflict so that second line is phone pole

Bob: svn commit -m "changed second line to phone pole"

Alice: svn update

Total Pages = 8 Page 3 over. . .

CSC207/B07 Midterm — Solutions 23 October 2013

Question 2. [8 marks]

Consider the following definitions.
public class Animal {

public Animal() {

}

}

public interface Winged {

public void fly();

}

public class Mammal extends Animal {

public Mammal() {

super();

}

}

public interface FourLegged {

public void walk();

}

public class Horse extends Mammal implements FourLegged {

public Horse() {

super();

}

public void walk() {

System.out.println("One, two, three, four.");

}

}

Q: Which of the following pieces of Java code will compile without errors (in addition
to the above definitions)? Circle all that apply.

1. Mammal mammal = new Mammal();

2. Animal animal = new Mammal();

3. Mammal mammal = new Animal();

4. Winged winged = new Winged();

5. FourLegged fourLegged = new Horse();

6. FourLegged fourLegged = new Mammal();

7. public class Bat extends Mammal implements Winged {

public Bat() {

super();

}

public void talk() {

System.out.println("I’m a flying mammal.");

}

}

8. public class Bird extends Animal implements Winged {

public Bird() {

super();

}

public void fly() {

System.out.println("I’m flying!");

}

}

Total Pages = 8 Page 4 over. . .

CSC207/B07 Midterm — Solutions 23 October 2013

Question 3. [23 marks]

Part (a) [5 marks]

Add a class StudentTA (a student who is a teaching assistant) to the UML diagram above. Note
that all teaching assistants are UnionMembers. In StudentTA, based on the UML diagram, include
any necessary instance variables and methods.

Part (b) [5 marks]

Implement the class StudentTA.

class StudentTA extends Student implements UnionMember {

private int dues;

private String membership;

public StudentTA(String first, String last,

String stuNum, String membership, int dues) {

super(first, last, stuNum);

this.membership = membership;

this.dues = dues;

}

public String getMembership() {

return membership;

}

public int getDues() {

return dues;

}

}

Total Pages = 8 Page 5 over. . .

CSC207/B07 Midterm — Solutions 23 October 2013

Part (c) [5 marks]

Complete the implementation of the class UniversityMember below, according to the UML dia-
gram. Recall that the UML keyword readOnly indicates that the field is a constant.

public abstract class UniversityMember {

private String firstName;

private String lastName;

public static final String [] CAMPUSES = {"StGeorge", "UTM", "UTSC"};

public UniversityMember(String first, String last) {

firstName = first;

lastName = last;

}

public String getFirstName() {

return firstName;

}

public String getLastName() {

return lastName;

}

public String toString() {

return lastName + ", " + firstName;

}

public static boolean isValidCampus(String campus) {

return Arrays.asList(CAMPUSES).contains(campus);

}

}

Total Pages = 8 Page 6 over. . .

CSC207/B07 Midterm — Solutions 23 October 2013

Part (d) [2 marks]

Implement UnionMember according to the UML diagram.

public interface UnionMember {

public String getMembership();

public int getDues();

}

Part (e) [6 marks]

Implement Professor according to the UML diagram. The method worksIn returns whether the
given area is one of this Professor’s research areas. The method toString should, in addition to
the last and first name, include the department this Professor works at.

publi class Professor extends UniversityMember {

private String department;

private List<String> researchAreas;

public Professor(String first, String last, String department) {

super(first, last);

this.researchAreas = new ArrayList<String>();

this.department = department;

}

public void addArea(String area) {

researchAreas.add(area);

}

public boolean worksIn(String area) {

return researchAreas.contains(area);

}

public String toString() {

return super.toString() + ", " + department;

}

}

Total Pages = 8 Page 7 over. . .

CSC207/B07 Short Java built-in class descriptions 23 October 2013

Last Name: First Name:

public class Arrays:

static <T> List<T> asList(T... a):

Returns a fixed-size list backed by the specified array.

public class ArrayList<E> implements List<E>:

boolean add(E e):

Appends the specified element to the end of this list.

void add(int index, E element):

Inserts the specified element at the specified position in this list.

boolean contains(Object o):

Returns true if and only if this list contains the specified element.

E get(int index):

Returns the element at the specified position in this list.

int indexOf(Object o):

Returns the index of the first occurrence of the specified element

in this list, or -1 if this list does not contain the element.

boolean isEmpty():

Returns true if and only if this list contains no elements.

E remove(int index):

Removes the element at the specified position in this list.

E set(int index, E element):

Replaces the element at the specified position in this list with

the specified element.

int size():

Returns the number of elements in this list.

SVN commands

svn add [PATH]

svn checkout URL

svn commit [PATH] -m MESSAGE

svn list [PATH]

svn status [PATH]

svn update [PATH]

Total Marks = 41

End of Solutions

