
Hash-Based Indexes

Chapter 11

Sina Meraji

Introduction

• As for any index, 3 alternatives for data entries
k*:

– Data record with key value k

– <k, rid of data record with search key value k>

– <k, list of rids of data records with search key k>

– Choice orthogonal to the indexing technique

• Hash-based indexes are best for equality
selections. Cannot support range searches.

• Static and dynamic hashing techniques exist;

Static Hashing

• # primary pages fixed, allocated sequentially,
never de-allocated; overflow pages if needed.

• h(k) mod N = bucket to which data entry with
key k belongs. (N = # of buckets)

h(key) mod N

h
key

Primary bucket pages Overflow pages

2

0

N-1

Static Hashing (Contd.)

• Buckets contain data entries.

• Hash fn works on search key field of record r. Must
distribute values over range 0 ... M-1.
– h(key) = (a * key + b) usually works well.

– a and b are constants; lots known about how to tune h.

• Long overflow chains can develop and degrade
performance.
– Extendible and Linear Hashing: Dynamic techniques to

fix this problem.

Extendible Hashing

• Situation: Bucket (primary page) becomes full. Why
not re-organize file by doubling # of buckets?
– Reading and writing all pages is expensive!
– Idea: Use directory of pointers to buckets, double # of

buckets by doubling the directory, splitting just the
bucket that overflowed!

– Directory much smaller than file, so doubling it is much
cheaper. Only one page of data entries is split. No
overflow page!

– Trick lies in how hash function is adjusted!

Example

• Directory is array of size 4.

• To find bucket for r, take last
`global depth’ # bits of h(r); we
denote r by h(r).

– If h(r) = 5 = binary 101,
it is in bucket pointed to
by 01.

❖ Insert: If bucket is full, split it (allocate new page, re-distribute).

❖ If necessary, double the directory. (As we will see, splitting a
bucket does not always require doubling; we can tell by
comparing global depth with local depth for the split bucket.)

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Insert h(r)=20 (Causes Doubling)

20*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

Points to Note

• 20 = binary 10100. Last 2 bits (00) tell us r belongs in
A or A2. Last 3 bits needed to tell which.
– Global depth of directory: Max # of bits needed to tell

which bucket an entry belongs to.

– Local depth of a bucket: # of bits used to determine if an
entry belongs to this bucket.

• When does bucket split cause directory doubling?
– Before insert, local depth of bucket = global depth. Insert

causes local depth to become > global depth; directory is
doubled by copying it over and `fixing’ pointer to split
image page. (Use of least significant bits enables efficient
doubling via copying of directory!)

Directory Doubling

00

01

10

11

2

Why use least significant bits in directory?
 Allows for doubling via copying!

000

001

010

011

3

100

101

110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6*

6*

6 = 110
000

100

010

110

001

101

011

111

Least Significant Most Significant

Comments on Extendible Hashing
• If directory fits in memory, equality search

answered with one disk access; else two.
– 100MB file, 100 bytes/rec, 4K pages contains 1,000,000

records (as data entries) and 25,000 directory elements;
chances are high that directory will fit in memory.

– Directory grows in spurts, and, if the distribution of hash
values is skewed, directory can grow large.

– Multiple entries with same hash value cause problems!

• Delete: If removal of data entry makes bucket
empty, can be merged with `split image’. If each
directory element points to same bucket as its split
image, can halve directory.

Linear Hashing

• This is another dynamic hashing scheme, an
alternative to Extendible Hashing.

• LH handles the problem of long overflow chains
without using a directory, and handles duplicates.

• Idea: Use a family of hash functions h0, h1, h2, ...
– hi(key) = h(key) mod(2iN); N = initial # buckets

– h is some hash function (range is not 0 to N-1)

– If N = 2d0, for some d0, hi consists of applying h and looking
at the last di bits, where di = d0 + i.

– hi+1 doubles the range of hi (similar to directory doubling)

Linear Hashing (Contd.)

• Directory avoided in LH by using overflow pages,
and choosing bucket to split round-robin.

– Splitting proceeds in `rounds’. Round ends when all NR

initial (for round R) buckets are split. Buckets 0 to Next-
1 have been split; Next to NR yet to be split.

– Current round number is Level.

– Search: To find bucket for data entry r, find hLevel(r):

• If hLevel(r) in range `Next to NR’ , r belongs here.

• Else, r could belong to bucket hLevel(r) or bucket hLevel(r) + NR;
must apply hLevel+1(r) to find out.

Overview of LH File

• In the middle of a round.

Levelh

Buckets that existed at the

beginning of this round:

this is the range of

Next

Bucket to be split

of other buckets) in this round

Levelh search key value)(

search key value)(

Buckets split in this round:

If

is in this range, must use

h Level+1

`split image' bucket.

to decide if entry is in

created (through splitting

`split image' buckets:

Linear Hashing (Contd.)

• Insert: Find bucket by applying hLevel / hLevel+1:
– If bucket to insert into is full:

• Add overflow page and insert data entry.

• (Maybe) Split Next bucket and increment Next.

• Can choose any criterion to `trigger’ split.

• Since buckets are split round-robin, long
overflow chains don’t develop!

• Doubling of directory in Extendible Hashing is
similar; switching of hash functions is implicit in
how the # of bits examined is increased.

Example of Linear Hashing

• On split, hLevel+1 is used to re-
distribute entries.

0
hh

1

(This info

is for illustration

only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents

of the linear hashed

file)

Next=0

PRIMARY

PAGES

Data entry r
with h(r)=5

Primary

bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

0
hh

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY

PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW

PAGES

43*

00100

Example: End of a Round

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=0

PRIMARY
PAGES

OVERFLOW

PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44*36*

37*29*

30*

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

Level=1

111

11

PRIMARY

PAGES
OVERFLOW

PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

Summary

• Hash-based indexes: best for equality searches,
cannot support range searches.

• Static Hashing can lead to long overflow chains.

• Extendible Hashing avoids overflow pages by splitting
a full bucket when a new data entry is to be added to
it. (Duplicates may require overflow pages.)

– Directory to keep track of buckets, doubles periodically.

– Can get large with skewed data; additional I/O if this does
not fit in main memory.

Summary (Contd.)

• Linear Hashing avoids directory by splitting buckets
round-robin, and using overflow pages.
– Overflow pages not likely to be long.

– Duplicates handled easily.

– Space utilization could be lower than Extendible Hashing,
since splits not concentrated on `dense’ data areas.
• Can tune criterion for triggering splits to trade-off slightly longer

chains for better space utilization.

• For hash-based indexes, a skewed data distribution is
one in which the hash values of data entries are not
uniformly distributed!

External Sorting

Chapter 13

Why Sort?

• A classic problem in computer science!

• Data requested in sorted order
– e.g., find students in increasing gpa order

• Sorting is first step in bulk loading B+ tree index.

• Sorting useful for eliminating duplicate copies in a
collection of records (Why?)

• Sort-merge join algorithm involves sorting.

• Problem: sort 1Gb of data with 1Mb of RAM.
– why not virtual memory?

2-Way Sort: Requires 3 Buffers

• Pass 1: Read a page, sort it, write it.

– only one buffer page is used

• Pass 2, 3, …, etc.:

– three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

Two-Way External Merge Sort
• Each pass we read + write

each page in file.

• N pages in the file => the
number of passes

• So toal cost is:

• Idea: Divide and conquer:
sort subfiles and merge

 = +log2 1N

 ()2 12N Nlog +

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

General External Merge Sort

• To sort a file with N pages using B buffer pages:

– Pass 0: use B buffer pages. Produce sorted runs
of B pages each.

– Pass 2, …, etc.: merge B-1 runs.

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

More than 3 buffer pages. How can we utilize them?

Cost of External Merge Sort

• Number of passes:

• Cost = 2N * (# of passes)

• E.g., with 5 buffer pages, to sort 108 page file:
– Pass 0: = 22 sorted runs of 5 pages each

(last run is only 3 pages)

– Pass 1: = 6 sorted runs of 20 pages each
(last run is only 8 pages)

– Pass 2: 2 sorted runs, 80 pages and 28 pages

– Pass 3: Sorted file of 108 pages

  1 1+ −log /B N B

 108 5/

 22 4/

Number of Passes of External Sort

 N B=3 B=5 B=9 B=17 B=129 B=257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on
sorting column(s).

• Idea: Can retrieve records in order by traversing
leaf pages.

• Is this a good idea?

• Cases to consider:

– B+ tree is clustered Good idea!

– B+ tree is not clustered Could be a very bad idea!

Clustered B+ Tree Used for Sorting

• Cost: root to the left-most
leaf, then retrieve all leaf
pages

Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Unclustered B+ Tree Used for Sorting

• For data entries; each data entry contains
rid of a data record. In general, one I/O per
data record!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000

1,000 2,000 1,000 10,000 100,000

10,000 40,000 10,000 100,000 1,000,000

100,000 600,000 100,000 1,000,000 10,000,000

1,000,000 8,000,000 1,000,000 10,000,000 100,000,000

10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

p: # of records per page
B=1,000 and block size=32 for sorting
p=100 is the more realistic value.

Summary

• External sorting is important; DBMS may
dedicate part of buffer pool for sorting!

• External merge sort minimizes disk I/O cost:
– Pass 0: Produces sorted runs of size B (# buffer

pages). Later passes: merge runs.

– # of runs merged at a time depends on B, and block
size.

– Larger block size means less I/O cost per page.

– Larger block size means smaller # runs merged.

– In practice, # of runs rarely more than 2 or 3.

Summary, cont.

• Choice of internal sort algorithm may matter:

– Quicksort: Quick!

– Heap/tournament sort: slower (2x), longer runs

• The best sorts are wildly fast:

– Despite 40+ years of research, we’re still
improving!

• Clustered B+ tree is good for sorting;
unclustered tree is usually very bad.

