
CS 443
Database Management Systems

Professor: Sina Meraji

Logistics

⚫ Instructor: Sina Meraji

⚫ Email: sina.mrj@gmail.com

⚫ Office hours: Mondays 17-18 pm(by appointment)

⚫Location: TBD

⚫ TAs:

⚫ Safoura Janosepah: safoura.janosepah@mail.utoronto.ca

⚫ zannis xarchakos zannisxarchakos@hotmail.com

⚫ Webpage:

⚫ http://www.cdf.toronto.edu/~csc443h/fall/syllabus.sht

ml

mailto:safoura.janosepah@mail.utoronto.ca
http://www.cdf.toronto.edu/~csc443h/fall/syllabus.shtml

Assignments and Final Project

⚫ 2 Assignments

⚫ Final Project

⚫ Research Project

⚫ Must be done as a team(2-3 people)

⚫ You have to prepare a survey of a topic

⚫ You will present your survey

⚫ Will discuss the details soon

3

Exams

⚫ Midterm (15%)

⚫ Monday, in class time

⚫ Final (40%),

⚫ Will be cumulative

⚫ I will be explicit about what you are responsible

for on the final

⚫ You have to get more than 40(out of 100) to

pass the course

4

Grading

Work Notes Weight Due Date

Assignment 1 8% Oct 4th

Assignment 2 12% Nov 15th

Final Project 25% Dec 5th

Midterm 15% Oct 22nd

Final 40% you have to get
more than 40%

Late policy

⚫ Assignments will be submitted electronically

⚫ Due at 11:55pm on due date

⚫ You can submit up to 2 days late

⚫ 10% penalty for each day

Course Information

• Prerequisite

– CSC343H1/434H1

– CSC369H1/468H1

– 364H1/CSC373H1/CSC375H1

– CGPA 3.0/enrolment in a CSC subject POSt.

– Any requests for waiver must be made by
email (containing copy of transcript)

http://www.artsandscience.utoronto.ca/ofr/calendar/crs_csc.htm#CSC343H1
http://www.artsandscience.utoronto.ca/ofr/calendar/crs_csc.htm#CSC369H1
http://www.artsandscience.utoronto.ca/ofr/calendar/crs_csc.htm#CSC373H1
http://www.artsandscience.utoronto.ca/ofr/calendar/crs_csc.htm#CSC375H1

What Is a DBMS?

• A very large, integrated collection of data.

• Models real-world enterprise.

– Entities (e.g., students, courses)

– Relationships (e.g., Madonna is taking CS564)

• A Database Management System (DBMS) is
a software package designed to store and
manage databases.

Files vs. DBMS

• Application must stage large datasets
between main memory & secondary
storage (e.g., buffering, page-oriented
access, etc.)

• Special code for different queries
• Must protect data from inconsistency due

to multiple concurrent users
• Crash recovery
• Security and access control

Why Use a DBMS?

• Data independence and efficient access

• Reduced application development time

• Data integrity and security

• Uniform data administration

• Concurrent access, recovery from crashes.

Why Study Databases??

• Shift from computation to information
– at the “low end”: scramble to webspace (a mess!)

– at the “high end”: scientific applications

• Datasets increasing in diversity and volume.
– Digital libraries, interactive video, Human Genome

project, EOS project, Linked Open Data

– ... need for DBMS exploding

• DBMS encompasses most of CS
– OS, languages, theory, AI, multimedia, logic

?

Data Models

• A data model is a collection of concepts for
describing data.

• A schema is a description of a particular
collection of data, using a given data model.

• The relational model of data is the most
widely used model today.
– Main concept: relation, basically a table with rows

and columns.
– Every relation has a schema, which describes the

columns, or fields.

Levels of Abstraction

• Many views, single
conceptual (logical)
schema and physical
schema.
– Views describe how users

see the data.
– Conceptual schema defines

logical structure
– Physical schema describes

the files and indexes used.

Schemas are defined using DDL; data is modified/queried using DML.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Example: University Database

• Example Conceptual schema:
– Students(sid: string, name: string, login: string,

age: integer, gpa:real)
– Courses(cid: string, cname:string, credits:integer)
– Enrolled(sid:string, cid:string, grade:string)

• Example Physical schema:
– Relations stored as unordered files.
– Index on first column of Students.

• Example External Schema (View):
– Course_info(cid:string,enrollment:integer)

Data Independence *

• Applications insulated from how data is
structured and stored.

• Logical data independence: Protection from
changes in logical structure of data.

• Physical data independence: Protection from
changes in physical structure of data.

One of the most important benefits of using a DBMS!

Concurrency Control

• Concurrent execution of user programs is
essential for good DBMS performance.
– Because disk accesses are frequent, and relatively slow, it

is important to keep the cpu humming by working on
several user programs concurrently.

• Interleaving actions of different user programs can
lead to inconsistency
– check is cleared while account balance is being computed

• DBMS ensures such problems don’t arise: users can
pretend they are using a single-user system.

Transaction: An Execution of a DB Program

• Key concept is transaction, which is an atomic
sequence of database actions (reads/writes).

• Each transaction, executed completely, must
leave the DB in a consistent state if DB is
consistent when the transaction begins.
– Users can specify integrity constraints on the data,

and the DBMS will enforce these constraints.

– Beyond this, the DBMS does not really understand
the semantics of the data. (e.g., it does not
understand how the interest on a bank account is
computed).

Scheduling Concurrent Transactions

• DBMS ensures that execution of {T1, ... , Tn} is
equivalent to some serial execution T1’ ... Tn’.
– Before reading/writing an object, a transaction requests

a lock on the object, and waits till the DBMS gives it the
lock. All locks are released at the end of the transaction.
(Strict 2PL locking protocol.)

– Idea: If an action of Ti (say, writing X) affects Tj (which
perhaps reads X), one of them, say Ti, will obtain the lock
on X first and Tj is forced to wait until Ti completes; this
effectively orders the transactions.

– What if Tj already has a lock on Y and Ti later requests a
lock on Y? (Deadlock!) Ti or Tj is aborted and restarted!

Ensuring Atomicity

• DBMS ensures atomicity (all-or-nothing property) even if
system crashes in the middle of a Xact.

• Idea: Keep a log (history) of all actions carried out by the
DBMS while executing a set of Xacts:
– Before a change is made to the database, the corresponding

log entry is forced to a safe location. (WAL protocol; OS
support for this is often inadequate.)

– Write Ahead Log (WAL), if log entry wasn’t saved before the
crash, corresponding change was not applied to database!

• After a crash, the effects of partially executed transactions
are undone using the log.

• Write Ahead Log (WAL), if log entry wasn’t saved before the crash,
corresponding change was not applied to database!

The Log

• The following actions are recorded in the log:
– Ti writes an object: The old value and the new value.

• Log record must go to disk before the changed page!

– Ti commits/aborts: A log record indicating this action.

• Log records chained together by Xact id, so it’s easy to
undo a specific Xact (e.g., to resolve a deadlock).

• Log is often duplexed and archived on “stable” storage.

• All log related activities (and in fact, all activities such
as lock/unlock, dealing with deadlocks etc.) are
handled transparently by the DBMS.

Databases make these folks happy ...

• End users and DBMS vendors

• DB application programmers

– E.g., smart webmasters

• Database administrator (DBA)

– Designs logical /physical schemas

– Handles security and authorization

– Data availability, crash recovery

– Database tuning as needs evolve
Must understand how a DBMS works!

Structure of a DBMS

• A typical DBMS has a
layered architecture.

• The figure does not show
the concurrency control
and recovery
components.

• This is one of several
possible architectures;
each system has its own
variations.

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers

must consider

concurrency

control and

recovery

Summary

• DBMS used to maintain, query large datasets.
• Benefits include recovery from system crashes,

concurrent access, quick application
development, data integrity and security.

• Levels of abstraction give data independence.
• A DBMS typically has a layered architecture.
• DBAs hold responsible jobs and

are well-paid! ☺
• DBMS R&D is one of the broadest,

most exciting areas in CS.

Overview of Storage and Indexing

Chapter 8

Data on External Storage

• Disks: Can retrieve random page at fixed cost
– But reading several consecutive pages is much cheaper than reading

them in random order

• Tapes: Can only read pages in sequence
– Cheaper than disks; used for archival storage

• File organization: Method of arranging a file of records on
external storage.
– Record id (rid) is sufficient to physically locate record

– Indexes are data structures that allow us to find the record ids of
records with given values in index search key fields

• Architecture: Buffer manager stages pages from external
storage to main memory buffer pool. File and index layers
make calls to the buffer manager.

Alternative File Organizations

Many alternatives exist, each ideal for some
situations, and not so good in others:

– Heap (random order) files: Suitable when typical
access is a file scan retrieving all records.

– Sorted Files: Best if records must be retrieved in
some order, or only a `range’ of records is needed.

– Indexes: Data structures to organize records via
trees or hashing.

• Like sorted files, they speed up searches for a subset of
records, based on values in certain (“search key”) fields

• Updates are much faster than in sorted files.

Indexes

• An index on a file speeds up selections on the
search key fields for the index.
– Any subset of the fields of a relation can be the

search key for an index on the relation.
– Search key is not the same as key (minimal set of

fields that uniquely identify a record in a relation).

• An index contains a collection of data entries,
and supports efficient retrieval of all data
entries k* with a given key value k.
– Given data entry k*, we can find record with key k

in at most one disk I/O. (Details soon …)

B+ Tree Indexes

❖ Leaf pages contain data entries, and are chained (prev & next)
❖ Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf

Pages

Pages

(Sorted by search key)

Leaf

Example B+ Tree

• Find 28*? 29*? All > 15* and < 30*
• Insert/delete: Find data entry in leaf, then

change it. Need to adjust parent sometimes.
– And change sometimes bubbles up the tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Note how data entries

in leaf level are sorted

Hash-Based Indexes

• Good for equality selections.

• Index is a collection of buckets.
– Bucket = primary page plus zero or more

overflow pages.

– Buckets contain data entries.

• Hashing function h: h(r) = bucket in which
(data entry for) record r belongs. h looks at
the search key fields of r.
– No need for “index entries” in this scheme.

B+Tree VS Hashing

Alternatives for Data Entry k* in Index

• In a data entry k* we can store:
– Data record with key value k, or

– <k, rid of data record with search key value k>, or

– <k, list of rids of data records with search key k>

• Choice of alternative for data entries is
orthogonal to the indexing technique used to
locate data entries with a given key value k.
– Examples of indexing techniques: B+ trees, hash-

based structures

– Typically, index contains auxiliary information that
directs searches to the desired data entries

Alternatives for Data Entries (Contd.)

• Alternative 1:
– If this is used, index structure is a file organization

for data records (instead of a Heap file or sorted
file).

– At most one index on a given collection of data
records can use Alternative 1. (Otherwise, data
records are duplicated, leading to redundant
storage and potential inconsistency.)

– If data records are very large, # of pages containing
data entries is high. Implies size of auxiliary
information in the index is also large, typically.

Alternatives for Data Entries (Contd.)

• Alternatives 2 and 3:

– Data entries typically much smaller than data
records. So, better than Alternative 1 with large
data records, especially if search keys are small.
(Portion of index structure used to direct search,
which depends on size of data entries, is much
smaller than with Alternative 1.)

– Alternative 3 more compact than Alternative 2,
but leads to variable sized data entries even if
search keys are of fixed length.

Index Classification

• Primary vs. secondary: If search key contains primary
key, then called primary index.
– Unique index: Search key contains a candidate key.

• Clustered vs. unclustered: If order of data records is
the same as, or `close to’, order of data entries, then
called clustered index.
– Alternative 1 implies clustered; in practice, clustered also

implies Alternative 1 (since sorted files are rare).
– A file can be clustered on at most one search key.
– Cost of retrieving data records through index varies

greatly based on whether index is clustered or not!

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:

– B: The number of data pages

– R: Number of records per page

– D: (Average) time to read or write disk page

– Measuring number of page I/O’s ignores gains of
pre-fetching a sequence of pages; thus, even I/O
cost is only approximated.

– Average-case analysis; based on several
simplistic assumptions.

Good enough to show the overall trends!

Comparing File Organizations

• Heap files (random order; insert at eof)

• Sorted files, sorted on <age, sal>

• Clustered B+ tree file, Alternative (1), search
key <age, sal>

• Heap file with unclustered B + tree index on
search key <age, sal>

• Heap file with unclustered hash index on
search key <age, sal>

Operations to Compare

• Scan: Fetch all records from disk

• Equality search

• Range selection

• Insert a record

• Delete a record

Assumptions in Our Analysis

• Heap Files:
– Equality selection on key; exactly one match.

• Indexes:
– Alt (2), (3): data entry size = 10% size of record

– Hash: No overflow buckets.
• 80% page occupancy => File size = 1.25 data size

– Tree: 67% occupancy (this is typical).
• Implies file size = 1.5 data size

Assumptions (contd.)

• Scans:

– Leaf levels of a tree-index are chained.

– Index data-entries plus actual file scanned for
unclustered indexes.

• Range searches:

– We use tree indexes to restrict the set of data
records fetched, but ignore hash indexes.

Cost of Operations
 (a) Scan (b)

Equality
(c) Range (d) Insert (e) Delete

(1) Heap

(2) Sorted

(3) Clustered

(4) Unclustered
Tree index

(5) Unclustered
Hash index

Several assumptions underlie these (rough) estimates!

Cost of Operations
 (a) Scan (b) Equality (c) Range (d) Insert (e) Delete

(1) Heap BD 0.5BD BD 2D Search
+D

(2) Sorted BD Dlog 2B D(log 2 B +
pgs with
match recs)

Search
+ BD

Search
+BD

(3)
Clustered

1.5BD Dlog F 1.5B D(log F 1.5B
+ # pgs w.
match recs)

Search
+ D

Search
+D

(4) Unclust.
Tree index

BD(R+0.15) D(1 +
log F 0.15B)

D(log F 0.15B
+ # pgs w.
match recs)

Search
+ 2D

Search
+ 2D

(5) Unclust.
Hash index

BD(R+0.125) 2D BD Search
+ 2D

Search
+ 2D

Several assumptions underlie these (rough) estimates!

Understanding the Workload

• For each query in the workload:

– Which relations does it access?

– Which attributes are retrieved?

– Which attributes are involved in selection/join conditions?
How selective are these conditions likely to be?

• For each update in the workload:

– Which attributes are involved in selection/join conditions?
How selective are these conditions likely to be?

– The type of update (INSERT/DELETE/UPDATE), and the attributes
that are affected.

Choice of Indexes

• What indexes should we create?

– Which relations should have indexes? What
field(s) should be the search key? Should we
build several indexes?

• For each index, what kind of an index should
it be?

– Clustered? Hash/tree?

Choice of Indexes (Contd.)

• One approach: Consider the most important queries in
turn. Consider the best plan using the current indexes,
and see if a better plan is possible with an additional
index. If so, create it.
– Obviously, this implies that we must understand how a

DBMS evaluates queries and creates query evaluation plans!

– For now, we discuss simple 1-table queries.

• Before creating an index, must also consider the
impact on updates in the workload!
– Trade-off: Indexes can make queries go faster, updates

slower. Require disk space, too.

Index Selection Guidelines
• Attributes in WHERE clause are candidates for index keys.

– Exact match condition suggests hash index.

– Range query suggests tree index.
• Clustering is especially useful for range queries; can also help on equality

queries if there are many duplicates.

• Multi-attribute search keys should be considered when a WHERE

clause contains several conditions.
– Order of attributes is important for range queries.

– Such indexes can sometimes enable index-only strategies for important
queries.
• For index-only strategies, clustering is not important!

• Try to choose indexes that benefit as many queries as possible.
Since only one index can be clustered per relation, choose it
based on important queries that would benefit the most from
clustering.

Examples of Clustered Indexes

• B+ tree index on E.age can be used
to get qualifying tuples.
– How selective is the condition?

– Is the index clustered?

• Consider the GROUP BY query.
– If many tuples have E.age > 10, using

E.age index and sorting the retrieved
tuples may be costly.

– Clustered E.dno index may be better!

• Equality queries and duplicates:
– Clustering on E.hobby helps!

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

Indexes with Composite Search Keys

• Composite Search Keys: Search on
a combination of fields.
– Equality query: Every field value is

equal to a constant value. E.g. wrt
<sal,age> index:
• age=20 and sal =75

– Range query: Some field value is not
a constant. E.g.:
• age =20; or age=20 and sal > 10

• Data entries in index sorted by
search key to support range
queries.
– Lexicographic order, or

– Spatial order.

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

Composite Search Keys

• To retrieve Emp records with age=30 AND sal=4000,
an index on <age,sal> would be better than an index
on age or an index on sal.

– Choice of index key orthogonal to clustering etc.

• If condition is: 20<age<30 AND 3000<sal<5000:

– Clustered tree index on <age,sal> or <sal,age> is best.

• If condition is: age=30 AND 3000<sal<5000:

– Clustered <age,sal> index much better than <sal,age>
index!

• Composite indexes are larger, updated more often.

Index-Only Plans

• A number of
queries can be
answered
without
retrieving any
tuples from one
or more of the
relations
involved if a
suitable index is
available.

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND

E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>

Tree index!

<E. age,E.sal>
or

<E.sal, E.age>

Tree index!

Index-Only Plans (Contd.)

• Index-only plans can also be found for
queries involving more than one table;
more on this later.

Summary

• Many alternative file organizations exist, each
appropriate in some situation.

• If selection queries are frequent, sorting the file
or building an index is important.
– Hash-based indexes only good for equality search.

– Sorted files and tree-based indexes best for range
search; also good for equality search. (Files rarely
kept sorted in practice; B+ tree index is better.)

• Index is a collection of data entries plus a way to
quickly find entries with given key values.

Summary (Contd.)

• Data entries can be actual data records, <key,
rid> pairs, or <key, rid-list> pairs.
– Choice orthogonal to indexing technique used to

locate data entries with a given key value.

• Can have several indexes on a given file of data
records, each with a different search key.

• Indexes can be classified as clustered vs.
unclustered, primary vs. secondary, and dense
vs. sparse. Differences have important
consequences for utility/performance.

Summary (Contd.)

• Understanding the nature of the workload for the
application, and the performance goals, is essential
to developing a good design.
– What are the important queries and updates? What

attributes/relations are involved?

• Indexes must be chosen to speed up important
queries (and perhaps some updates!).
– Index maintenance overhead on updates to key fields.
– Choose indexes that can help many queries, if possible.
– Build indexes to support index-only strategies.
– Clustering is an important decision; only one index on a

given relation can be clustered!
– Order of fields in composite index key can be important.

