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Abstract

Semantic data control is responsible for keeping a database valid relative to a specified
set of constraints. According to [ÖzVa99], it includes view maintenance, semantic
integrity control and security control. In this survey paper we will examine the first two
characteristics relative to a distributed database environment.

View maintenance deals with synchronizing relevant data in a database environment. For
example the results from often executed queries may be stored at one or more sites in
order to reduce the query response time. We will refer to such stored query results as
materialized views and to the data on which the queries are posed as the underlying or
base data. The synchronization problem is to insure that, when the underlying data is
updated the updates are propagated to the materialized view (this problem is called
materialized view maintenance) and that the reverse also holds - i.e. when the
materialized view is updated the updates are propagated to the underlying data (this
problem is called materialized view update). Note that, while there is always a unique
solution to the first problem, there may be more than one ways to update the underlying
data relative to a materialized view update.

Semantic integrity control relates to the problem of keeping the distributed data valid
relative to a pre-specified set of integrity constraints. For example when the data is
updated, we must make sure that the specified integrity constraints continue to hold on
the data after the update. One type of algorithms for performing integrity control,
validates that updates will preserve the integrity constraints before executing them. The
other type of algorithms executes any updates and then checks to see if the integrity
constraints are violated, and if they are, the system tries to perform a minimal
modification on the database, such that the integrity constraints will be restored.

In this survey paper we will introduce a formal structure to the problem of semantic data
control and will examine existing algorithms for materialized view maintenance,
materialized view update and for the two types of semantic integrity controls approaches.

1. Introduction

1.1 Background

1.1.1 Constraints in Distributed Databases

A distributed database is a database distributed between several sites. The reasons for the
data distribution may include the inherent distributed nature of the data or performance
reasons. In a distributed database the data at each site is not necessarily an independent
entity, but can be rather related to the data stored on the other sites. This relationship
together with the integrity assertions on the data are expressed in the form of data
constraints. Figure 1 shows a classification of the possible data constraints that can hold
on a distributed database. We can think of those constraints as an invariant, which must
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hold at any given time instance (static constraints) or during any time interval of pre-
specified length (dynamic constraints).

At the top level there are two type of constraints dynamic and static. To check whether a
static constraint holds, at any given time point, we need a static snapshot of the database
instance. On the other hand, to verify whether a dynamic constraint holds we need to
have information about how the database instance evolves over time. An example of a
dynamic constraint is: within every 5 minutes of the life of the database instance
something must happen, e.g. an update must occur.

On an orthogonal plane, data constraints can be integrity or duplication. Integrity
constraints are independent of how the data is distributed or duplicated If an integrity
constraint is based on a single collection of data objects and a single variable it is called
individual. Set constraints are those that are based on more than one data collections or
on more than one variables. For example, in the distributed database shown in Figure 2,
individual integrity constraints may include the primary key constraints on the tables R1

and R2, whiles a set integrity constraint may include a referential foreign key constraint
between the two tables. Aggregate constraints are integrity constraints involving
aggregate operators such as min, max, sum, count and average. The cash present at every
supermarket, at any time instance, should be less than $10,000 is an example of a static
individual aggregate data constraint on the distributed database of a chain-store
supermarket.

Note, that integrity constraints can be both dynamic and static. In particular a dynamic
integrity constraint may state that if an update, which violates a constraint, is performed,
a compensating update which restores the constraint should be performed within two
minutes. On the other hand, static integrity constraints require the integrity constraint to
be true at any given time instance.
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.

On a orthogonal plain, a duplication constraint specifies at what sites replicated or
derived data is to be stored. We will refer to the first type of duplication constraints as
replica constraints and to the second type as view constraints. In the example of Figure
2, the constraint that the table R1 is to be replicated at site 4 as R4 is a replica constraint,
while the constraint that site 3 contains a table with derived data from tables R1 and R2 is
a view constraint. From now on, we will refer to the stored query result over existing
data sets as a materialized view. In the example from Figure 2, V is a materialized view
because it stores the result of the query which performs a join between the tables R1 and
R2. We will refer to the tables R1 and R2 as the underlying tables of the materialized view
V.

Note that replica constraints are a special kind of view constraints. This is the case
because a replica constraint can be expressed as a view constraint in which the query
producing the view is the identity query. As well, note that duplication constraints can be
both dynamic and static. In the example of Figure 2, a dynamic constraint may state that
if the table R1 is updated, the view V has to be updated accordingly within five minutes to
reflect the changes.

There is another type of constraints related to distributed databases and databases in
general - update constraints. Those constraints specify what kind of updates are allowed
on the data. More specifically an update constraint consists of a triple (P+,P-,P+-)
associated with each collection of data items, where each of the Ps is a predicate formula
with at most one free variable, specifying what type of add, delete and modify operations
respectively are allowed on the collection. Note that, in particular the Ps may involve
part of the database instance as a parameter. For example, suppose we have the tables
R1(A,B) and R2(B,C) where R1.B is a foreign key pointing to the primary key R2.B. We

can insure that referential integrity constraint: ∀t1∈R1 there ∃t2∈R2, s.t. t1.B=t2.A (this is

a static integrity set constraint) holds by imposing the update constraint (∃t2(t1.B=t2.B),

TRUE, t1(new).B = t1(old).B ∨ ∃t2(t1(new).B=t2.B)) on the table R1 and the update

constraint (TRUE, ˥∃t1(t1.B=t2.B), t2(new).B = t2(old).B ∨ ˥∃t1(t1.B=t2(new).B)) on table
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R. Note that the free variable in the predicate expressions is bound to the tuple which is
inserted/deleted from the tables and t(new) and t(old) are used to denote respectively the
new and the old value of the tuple being updated, where t is the free variable. As seen
from the above example, a characteristic of update constraints is that they can be used to
guarantee that certain data constraints hold after an update of the allowed type is
performed, provided that this was the case before the update was executed.

Note that, just like data constraints, update constraints can be dynamic (in the previous
paragraph we introduced static update constraints). A dynamic update constraint is a
quadruple (T, P+,P-,P+-), where T is a time constraint saying when the static update
constraint (P+,P-,P+-) should start holding on the database instance. An example of a
time constraint is within 5 minutes of the update. Figure 3 shows a visual classification
of the possible update constraints. Note that, as shown in the figure, update constraints
may be imposed on a single update or on a series of updates designated in a transaction.
In the first case we will talk about a single update constraint and in the second about a
multiple updates constraint.

In this paper, we will focus only on how static update constraints can be used to enforce
data constraints. There are two reasons on which this decision is based. First, a dynamic
constraint of the type: if (P+,P-,P+-) doesn't hold after an update, another update will be
perform within a specified interval of time so that after the second update the predicate
condition will hold can be considered a multiple updates constraint on a transaction
which contains the above two updates. The second reason, why we avoid exploring
dynamic update constraints, is to avoid unnecessarily complications in the reasoning to
follow.

So far, we have defined the model we will be working with, i.e. how we interpret a
distributed database, what type of constraints we expect to be imposed on its data and
what are update constraints. In the next sections, we will give background on the
problem of how duplication data constraints and integrity constraints can be imposed
through the use of synchronization algorithms and update constraints.
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1.1.2 Imposing Constraints

Let's start by introducing some terminology relevant to duplicate constraints. In general
there are two type of algorithms for imposing such constraints - view maintenance
algorithms and view update algorithms. The first type of algorithms are used to
propagate changes made to the underlying data sources to the corresponding materialized
view. The view update algorithms are used to do the reverse, i.e. to propagate changes
made to a materialized view to its underlying data sources. Both type of algorithms are
called synchronization algorithms because they are used to synchronize the data in a
distributed database environment. Depending, on whether the synchronization is done
immediately during each update or some time in the future, we speak of immediate and
deferred data synchronization algorithms. Table 1 summarizes the different
synchronization algorithms for imposing duplication constraints, together with the
necessary update constraints.

constraint
operation

static update
constraints to be
imposed

imposing dynamic
duplicate
constraints

imposing static
duplicate
constraints

update to a
materialized view

integrity constraint
preserving +
guaranteeing feasible
translation to the
underlying data

through deferred
materialized view
update algorithm

through immediate
materialized view
update algorithm

update to underlying
data sources

integrity constraint
preserving

through deferred
materialized view
maintenance
algorithm

through immediate
materialized view
maintenance
algorithm

Table 1. Shows how duplication constraints are imposed.

One thing the table shows that when an update(s) to a materialized view occurs, for
this/those update(s) to be accepted, it must be the case that there is a feasible translation
of the update(s) to the underlying data sources, which can be guaranteed through a static
single/multiple update constraint. Informally, a feasible translation of an update to the
underlying data sources is a translation that propagates the changed made to the
materialized view to the underlying data in a "well-found" manner relative to a specified
condition. We will examine this subject in details in Section 3.

The table also shows that it must also be true that, either the replica constraints specified
on a database, after an update is performed, are preserved or that they will be somehow
restored shortly. As well, it must be the case that a database is valid relative to the
specified integrity constraints before the synchronization algorithms can start working
because they rely on the later. Note as well, that we didn't consider replica constraints
because they are a special kind of duplicate constraints. Existing synchronization
algorithms for materialized view maintenance will be explored in Section 2. The
synchronization algorithms for materialized view update will be explored in Section 3.
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Table 2 shows how static and dynamic integrity constraints can be imposed. One way
static integrity constraints can be imposed is by specifying appropriate static update
constraints. This process is called constraint compilation and will be examined closer in
Section 4.

imposing static integrity constraints imposing dynamic integrity constraints
through update constraints
by applying an immediate integrity
constraint restoring algorithm

by applying a deferred integrity constraint
restoring algorithm

Table 2. Shows how integrity constraints are imposed

Another way of imposing static integrity constraints is to allow for any kind of updates
on the database instance and try to restore the integrity constraints when they become
violated using integrity constraint restoring algorithms. Such algorithms usually work
by trying to find a "minimal", relative to some criteria, update to the database instance
that will restore the integrity constraints and then perform it. Integrity constraint
restoring algorithms will be examined in Section 5.

Imposing dynamic integrity constraints can be done by applying deferred integrity
constraint restoring algorithms or through dynamic update constraints. In this paper we
will examine only the first method and this will be done in Section 5.

To finish this introductory discussion of constraint enforcing, let's look at the example
shown in Figure 4.
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Consider the case, where table X contains the tuple (1,2), the tables Y is empty and the
table V contains the tuple (1,2). Now, consider the insertion of the tuple (1,3) to the table
Y. A synchronization algorithm will propagate this change to V, i.e. the new instance of
V will be {(1,2) ,(1,3)}. But then, the integrity constraint on V will be violated. If we use
an integrity constraint restoring algorithm, it may delete one of the tuples (1,2) or (1,3)
from the tables X or Y and as well, the corresponding tuple in V. This is because the
algorithm may decide that removing one of the tuples is the way to restore the integrity
constraints in the database through minimal change.

Another way of imposing the validity of the database is to use update constraints,
corresponding to the defined integrity constraints. Note that, if this is the case, an update
should not be committed until all updates resulting from it are successfully propagated.
In our example, if we try to insert (1,3) in Y, a synchronization algorithm will try to
propagate the change to V, but then the update constraint, which guarantees the validity
of V, will be fire and the original update to Y should be aborted.

1.2 Applications

Most applications working on top of distributed databases exploit materialized views to
produce fast access to derived data and lower CPU, disk and network loads. Examples of
traditional distributed database applications that use materialized views include banking,
billing, network management, distributed query optimization, integrity constraint
checking and switching software. More recent applications in this area include data
warehousing, OLAP, data replication, data visualization, mobile system and distributed
situation monitoring applications. The presented list is by no means complete and it is
very likely that some of the newly emerging software technologies will also rely on
materialized views to boost performance.

1.2.1 Data Warehouse Example

Generally speaking, a data warehouse contains aggregated data derived from a number of
data sources and is usually used by On-Line Analytical Processing (OLAP) tools and
datamining tools for the purpose of decision support (see Figure 5).
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The data sources consist of several databases, usually containing huge amount of data.
The day-to-day transactions of a store-chain, for some period of time, is a typical
example of the kind of data stored in the data sources. The materialized views on the
other hand contain summary data compiled from several data sources. For example the
result of retrieve queries may be cached onto the materialized views in order to achieve
faster response time to user requests. The auxiliary views in the picture are not
mandatory, and are used to contain additional information needed to support the
synchronization of the materialized views with the data sources (for more details see
Section 2).

1.2.2 Data Visualization

The purpose of a Data Visualization Application is to create visual images of large sets of
data, so that the users of the system can better perceive and understand the data. Possible
visualizations include graphs, maps, diagrams and s.o. A typical visualization application
consists of two components - the Data Query Module and the Graph Display Module (see
Figure 6).
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The data query module has the responsibility to calculate the results of user queries
against a distributed database and store them as materialized views. The graphical
display module has the capability of displaying the data in the materialized views in a
way specified by the user. Materialized views are needed in this scenario because the
display module usually needs to work with physically stored data that it can display.

1.2.3 Mobile Systems

In recent years, palmtops have become increasingly popular, not only for accessing local
information such as phone numbers and appointments, but also as a device for
communicating to the outside world. The connection between a palmtop and the outside
world (e.g. the internet) is provided through evenly spread Geo-Positioning Systems. For
example, the palmtop users may want to query the outside world for a particular
information. Since the transfer bandwidth is limited because of its physical
characteristics, materialized view may be used to store the results of frequently posed
queries and in this way reduce the bandwidth traffic. A particular characteristic of the
posed queries in a mobile system environment is that the location of the palmtop may be
a query parameter.

For example, let's consider the scenario shown in Figure 7.
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The palmtop user wants to know about all McDonalds in the area. The query is sent to
the geo-positioning system, which returns the answer. The query result is stored in a
materialized view on the palmtop. Now, if five miles down the road the palmtop user
posses the same query, only the change to the map have to sent to the laptop, i.e. we have
economized bandwidth.

1.2.4 Telephone Switches

Unlike mobile systems, in telephone switches the crucial requirement is minimizing the
query response time. Usually, each switch contains a main memory database in C++
structure consisting of several collections of objects. For a phone call to be routed,
information from several structures is usually required, i.e. a join between them has to be
performed. However, doing a join in real time for such type of applications is unfeasible
because of its slow execution. That is why, the results of frequently used joins are
usually stored in switches as main-memory materialized views.

1.3 Organization of the Paper

So far we have presented the basic components of a semantic data control engine for a
distributed system and have given example of practical application of those components.
In the next sections we will be explore existing algorithms for implementing the different
the components. In Section 2, we will explore materialized view maintenance
algorithms. In Section 3, we will cover existing materialized view update algorithms. In
Section 4, we will examine how update constraints for imposing integrity constraints are
produced through a technique called integrity constraint compilation In Section 5, we
will explore the other method of integrity constraint enforcement - through integrity
constraint restoring algorithms. Finally, in Section 6 we will summarize the presented
material and present some areas for future research.
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1.4 Bibliographic Notes

The presented classification of constraints and updates is an original contribution of the
author of the paper. The presented examples of applications of materialized views are
based on similar examples presented in [Mumi95] and [GuMu99]. More examples on the
application of data synchronization algorithms to the areas of data integration and query
optimization can be found in [GJM96], [ZHKF95] and [CKPS95].

2. Materialized View Maintenance

A materialized view is the stored result of a retrieve query. As the data, on which the
view is based (the so called underlying data) changes, so should the materialized view to
reflect the changes. Materialized view maintenance algorithms do exactly that, i.e. they
propagating updates to the underlying data sources to the materialized view. In this
section we will first classify existing materialized view maintenance algorithms and then
we will describe some of the more prominent ones.

2.1. Classification of Materialized View Maintenance Algorithms.

As the base data, on which materialized views are based, change so should the views
themselves in order to correctly reflect the new state of the database . The update of a
view is called view refresh and the ongoing process of synchronizing the view with the
underlying data is called view maintenance. There are two general types of view
maintenance algorithms - immediate and deferred. As the names show, in the first type
of algorithms a view is updated during the update to the base data, while in the second
type of algorithms the view refresh is done somewhere in the future, as a result of the
triggering of some event . Such event may include the activation of an alarm clock, user
interaction with the system, or may be triggered by a component of the system.

Before we continue our classification of view maintenance algorithms, it would be useful
to look at an example (see Figure 2). The materialized view V, stored at site 3 is
calculated as the inner join of two tables R1 and R2. Let's assume that at time 1, R1 is

updated to R1' and R2 is updated to R2'. Then V should change to V' = R1'⋈ R2' =

(R1+∆R1)⋈(R2+∆R2) = R1⋈R2 + R1⋈∆R2 +∆R1⋈R2+ ∆R1⋈∆R2, where ∆R is used to
denote the changes made to the table R, which may include insertions, deletions and

modifications. As well, R+∆R is used to represent the result of adding the changes of ∆R

to R. If at time 1, V' is recomputed as R1'⋈ R2', without the old value of the view V to be
used then we classify this algorithm as direct view refresh algorithm. If on the other

hand, ∆V is calculated first and then V' is calculated as V' = V+∆V, then we have an
incremental view refresh. In most cases the incremental algorithms are more efficient
than the direct update algorithms, i.e. in the case of small changes to the base tables it is

usually cheaper to compute ∆V and then V' as V+∆V, than to recompute V' from scratch.
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Continuing our classification, the incremental view maintenance algorithms can be
divided into two types: the ones that use auxiliary views and the ones that don't. To
illustrate the difference on our example, an algorithm of the second type could calculate

∆V as R1⋈∆R2 +∆R1⋈R2+ ∆R1⋈∆R2 or as ∆R1⋈R2'+∆R2⋈R1'- ∆R1⋈∆R2 where "-" is
used to indicate difference. If we know, that certain integrity constraints hold on the data,
the above expressions could be simplified. Note that, since neither the old values of the
underlying tables - R1 and R2, nor the new values R1' and R2' are stored at site 3, they have
to be fetched from sites 1 and 2 when a refresh is performed, which could result in
excessive network traffic if those relations are big. Another problem in these type of
view maintenance algorithms is that when site 1 receives a request for the value of R1', it
may have already changed to a new state. This problem is corrected by running an error
correcting procedure. Both problems are eliminated if auxiliary views are used.

An auxiliary views contains representative data from the underlying data, which is
sufficient to perform a view refresh. Overhead of this type of algorithms is the extra
storage spaced used for the auxiliary views and the extra processing time for refreshing
the auxiliary views. The later is the case because auxiliary views are materialized views
themselves and therefore also need to be refreshed. Just as in the case where auxiliary
views are not used, knowledge on existing integrity constraints may improve the
algorithm's performance. More specifically, when auxiliary views are used, the
knowledge of integrity constraints may be used to reduce the size of those views, which
will result in reduced storage and faster performance.

The classification of materialized view maintenance algorithms presented so far is shown
in Figure 8.

In the remainder of this section we will explore in greater details the theory behind
materialized view maintenance, with and without auxiliary views. As well, we will give
concrete examples of algorithms from literature implementing view maintenance.
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2.2 Incremental View Maintenance without Auxiliary Views

Let's first examine how materialized views based on SPJ (Select-Project-Join) queries are

managed. Such view V can be written as πA(σϒ(R1 ⋈ R2 ⋈ ... Rn), where R1,...,Rn are

relations, ⋈ is used to represent an inner join, ϒ is a predicate condition and A is a subset

of the attributes of the tables. Let's examine each operation separately. If V=σϒ(R), then

if R changes to R', V' will change to σϒ(R')= σϒ(R+∆R)= σϒ(R)+σϒ(∆R)=V+ σϒ(∆R), i.e.

∆V can be computed as σϒ(∆R), without accessing the base tables. Here we have used
the fact that selection is a distributive operator relative to union.

Unfortunately, projection is not a distributive operator relative to union. Consider the
simple example R={(2,1),(2,2),(3,1)} and ∆R={-(2,1)} (here - is used to denote deletion).

Then π1(R+∆R)= π1({(2,2),(3,1)})={(2),(3)} and π1(R)+π1(∆R)={(2),(3)}-{(2)}={(3)}.
The problem with the above example is that we used a projection that eliminates
duplicates, i.e. information is lost. What most view maintenance algorithms do, to
overcome this problem, is to somehow deal only with projections that don't eliminate
duplicates and are therefore distributive relative to union.

One way of insuring that duplicate tuples are not eliminated during projection is not to
allow duplicates in the first place. This can be achieved by introducing a unique ID value
assign to each tuple and requiring all projections to include this ID attribute as part of the
projection attribute lists. Since the introduced IDs are unique, projections will not have
duplicate tuples in the result to eliminate. In the above example if we add the tuple
identifiers as the first attributes we will get R={(1,2,1),(2,2,2),(3,3,1)} and ∆R={-(1,2,1)}.
Now a projection only on the second attribute will not be allowed, because it doesn't
include the first attribute, i.e. the ID attribute. If a projection on the first and second

attribute are performed we get π1,2(R+∆R)= π1,2({2,2,2),(3,3,1)}) = {(2,2),(3,3)} and

π1,2(R) + π1,2(∆R)={(1,2),(2,2),(3,3)}-{(1,2)}= {(2,2),(3,3)}. Note that in this case, we
may view the tuples as being objects with unique identifiers in an object oriented
database, which shows that the projection duplicate elimination problem is specific to the
relational model.

The second common way of dealing with projections is to "implement" duplicate
preserving projections. This can be done by storing next to each tuple an additional value
stating how many time the tuple appears in the relation. We redefine projection to

preserve duplicates and our example will now look as: π1(R+∆R)= π1({(2,2,#1),

(3,1,#1)}) ={(2,#1),(3,#1)} and π1(R)+π1(∆R)={(2,#2),(3,#1)}-{(2,#1)}={ (2,#1)
,(3,#1)}, where we have used #x after each tuple to show how many times it appears in
the relation. A disadvantage of this algorithm is that it increases the storage space of the
relations (we have to keep track of how much times each tuple is repeated) and the
processing time of executing operations such as projections and joins over them. An
advantage of this algorithm is that it makes duplicate elimination, aggregation and sorting
faster. As well, as we shall see later in this section, it simplifies view maintenance
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algorithms on views produced with queries involving aggregates. The presented
algorithm is known in literature as the counting algorithm and has several variations.

Now, let's look at a simple example of a query involving joins. If V=R1⋈R2⋈R3 and the
underlying relations are changed, the materialized view should be updated to

V'=(R1+∆R1)⋈(R2+∆R2)⋈(R3+∆R3)=R1⋈R2⋈R3+R1⋈R2⋈∆R3+...+∆R1⋈∆R2⋈∆R3. We
have used the fact the join operator is distributive relative to union to do the expansion.

Note that, if not all three base tables are updated, some of the 8 terms in ∆V will be

canceled. Note in particular, that if V is based on a multi-join between n tables, ∆V will
unfolded 2n-1 expressions.

One proposed way, to avoid calculating all the expressions in ∆V is based on tuple
marking. What such algorithms do, is to mark the tuples in the base relations as inserted,
deleted or old. Then a join between the tables can be performed, in such a way that
tuples are matched in the join, only if one of them is a new tuple. Whether the resulting
tuples are to be part of insertion or deletion in ∆V or to be ignored is determined by the
tuples joined to form the resulting tuple. For example if an inserted tuple is joined with a
deleted tuple, the resulting tuple will be ignored in ∆V. On the other hand if a deleted
tuple is joined with a deleted tuple, the resulting tuple (the tuple calculated by joining the
two tuples) will be added as deletion to ∆V.

Note that the formula for computing ∆V when a join condition is involved, and in
general, could be simplified if information about the integrity constraints that hold on the
underlying data are known. Let's look at a simple example to see how this can be done.
Suppose table R1 has attributes (A,B), where A is a primary key and B is a foreign key to

the table R2, which has attributes (B,C), where B is a primary key. Then if V=R1⋈R2, ∆V

can be calculated as ∆R1⋈∆R2+∆R1⋈R2+R1⋈∆R2. However, knowing the integrity

constraints which hold on the tables, we know that R1⋈∆R2 will be empty because of the
referential constraint between the two tables, which will simplify the formula for ∆V.
There are still many open research questions in the area of exploiting integrity constraints
to optimize view maintenance algorithms (for references to existing algorithms see the
bibliographical notes).

Maintenance algorithms, for views based on queries with outer joins and duplicate
preserving relational algebra operators and with recursive queries are not covered in this
survey paper because of their complexity. However, algorithms for doing so are known
in literature (see the bibliographic notes of this section for references).

To show how materialized views defined with queries involving aggregates can be
maintained, let's look at a simple example. Suppose R1={(1,2),(2,1),(2,4)} and V =

1ℱmin(2)(R1). Initially V will contain {(1,2),(2,1)}. It is clear that V can not be updated,
knowing only the changes made to R1. In general the aggregates min and max are not
self-maintainable, i.e. information about the state of the base tables is needed. Indeed
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there isn't a fast way of incrementally updating such views. In the above example, if the
tuple (1,2) is deleted from R1 an algorithm for calculating ∆V has to scan the whole
relation R1 to find the new minimum value, and the time complexity of doing so is equal
to re-computing V from scratch. If we have only self-maintainable aggregate such as
count or sum in the definition of V, an incremental refresh of V can be done by using the
tuple counting technique described earlier. For example let's have the above example,

but redefine V as 1ℱsum(2)(R1) or V={(1,2),(2,5)} . Now, suppose the tuple (1,2) is
deleted from R1. We can not simply subtract (1,2) from V and change it to {(1,0),(2,5)},
because this is obviously incorrect. On the other hand if we keep track on the number of
original tuples used to produce each aggregation, we will store V as {(1,2,#1),(2,5,#2)}
and will be able to perform the deletion of (1,2) from V correctly.

This concludes our overview of view maintenance algorithms that don't use auxiliary
views. In the above presentation we have only demonstrated how some basic algorithms
for such maintenance work, without going into great details. In the next section we will
do the same thing for algorithms in which auxiliary data is used.

2.3 Incremental View Maintenance with Auxiliary Views

Each materialized view may have a number of auxiliary views associated with it. The
purpose of the auxiliary views is to allow the corresponding materialized view to be
maintained based only on the changes made to the underlying data and not on the
underlying data itself. Formally, if Σ is a database schema, D a database instance of it, Q
is the query producing the materialized view and changes is the set of allowed changes
on the schema, the predicate that represents n

iiR 1}{ = being a set of auxiliary views is:

(auxiliary_views n
iiR 1}{ = ,Σ,D,Q,changes) ≡ (∃ query Q' ) s.t. (∀µ∈changes(Σ)) [if

(D+µ)∈Models(Σ) then Q(D+µ)=Q'(µ,Q(D), n
iiR 1}{ = )]

The above expression says, that n
iiR 1}{ = is a set of auxiliary views only if V can be

refreshed using them, the changes to the base tables and the old value of the materialized
view. Existing research in the area of materialized views has concentrated on the
problem of finding the smallest auxiliary set of views for which the above
auxiliary_views predicate holds. Clearly, the more is known about the integrity
constraints that hold on the data, the smaller the auxiliary views can be made.

Let's look at an example to demonstrate the approach. Suppose we have a table X(A,B,C)
where A is a primary key and B and C are foreign keys referencing the tables Z(B,D,M)
and Y(C,F,G) with primary keys B and C respectively. Let's as well assume that the
integrity constraints of the database are guaranteed through a multiple update constraint,
which as well allows only for tuples to be inserted and deleted, but doesn't allow more
than one operation on the same tuple in the same transaction. Let the materialized view V

be defined as V=πA,F,D(σD>10 ∧ F<3(X⋈X.C=Y.CY⋈X.B=Z.B Z). Now note that V can be

rewritten as V = πA,B,C(X) ⋈ X.C=Y.C πC,F(σF<3(Y)) ⋈ X.B=Z.B πB,D(σD>10(Z)) because



17

selection and join, and duplicate preserving projection and join are commutative. We
have duplicate preserving projection is this key because in all projections the key of the
table is projected. In general however, this is not the case and tuple identifiers or tuple
counters may have to be added as described in the previous section. Now Vnew, the new

value of V will be equal to Vnew= πA,B,C(X+∆X) ⋈ X.C=Y.C πC,F(σF<3(Y+∆Y)) ⋈ X.B=Z.B 
πB,D(σD>10(Z+∆Z)). Taking in account the integrity referential constraint that hold on the

schema, we see that the ∆Y⋈X and ∆Y⋈Z will be empty and that Vnew can be rewritten as

V+ πA,B,C(∆X) ⋈ X.C=Y.C πC,F(σF<3(∆Y)) ⋈ X.B=Z.B πB,D(σD>10(∆Z))+ πA,B,C(∆X) ⋈ X.C=Y.C 
πC,F(σF<3(∆Y)) ⋈ X.B=Z.B πB,D(σD>10(Z+∆Z))+ πA,B,C(∆X) ⋈ X.C=Y.C πC,F(σF<3(Y+∆Y)) ⋈
X.B=Z.B πB,D(σD>10(∆Z)), which shows that we need to store only πB,D(σD>10(Z)) and

πC,F(σF<3(Y)) as the auxiliary views.

In similar way, auxiliary views can be defined over queries containing outer joins,
recursive definitions and aggregates.

Note that there is a correspondence between the algorithms that use and don't use
auxiliary views. In both of them, formulas for calculating ∆V that rely as much as little as
possible on the underlying tables are tried to be computed in identical ways by exploiting
integrity constraints. The difference is that small reliance on the underlying tables, in the
first type of algorithms, is used to reduce disk storage, while in the second it is reduced to
reduce network traffic during materialized view refresh.

2.4 Summary

In this section we have classified different existing algorithms for materialized view
maintenance and demonstrated how some of them work, mostly through examples. We
didn't go in much details because of the limited scope of the paper.

2.5 Bibliographic Notes

The presented classification of view maintenance algorithms is an original one. However
it is partially based on the material presented in the survey paper on materialized view
updates - [GuMu95]. Good reference on the problem of error correction for algorithms
that don't use auxiliary views are [AESY97] and [SaBe00]. Marked tuple algorithms
(also known as tagging tuple algorithms) are first described in [BLT86]. For a reference
on tagging tuples in distributed databases see [BDMW98]. Good papers on the topic of
exploiting integrity constraints to optimize view maintenance algorithms are [Huyn96],
[QGMW96] and [Stan01]. Outer join view are described in [GJM94]. There are two
basic algorithms for maintaining view with recursive definition - the DRed Algorithm
and the Propagation/Filtration algorithm. The first is described in [GMS93] and the
second in [HD92]. A fundamental paper on the problem of maintaining views defined
with duplicate preserving algebraic expressions is [GrLe95]. The first paper to propose
an overall solution to the problem of maintaining view with aggregates is [MQM97].
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For the auxiliary view presentation we have used material from [Stan01] and
[QGMW96]. Other reference on the subject include [AMV98] and [Huyn96].

3. Materialized View Update

A materialized view update algorithm tries to translate updates made to materialized
views to the underlying tables. Unless the information stored in the materialized view is
not "equivalent" to the information stored in the underlying tables there isn't a unique
way of propagating the update. The idea behind view updates is to specify at view
creation time in what ways are updates to the view to be translated to the underlying data.

3.1 Translating Materialized View updates to the Underlying Data

Let's have a database schema Σ, and two materialized views V1 and V2 defined by the

queries Q1 and Q2 over Σ. We will write that V1 ≥ V2 iff ∀D1,D2∈Models(Σ),

Q1(D1)=Q1(D2) => Q2(D1)=Q2(D2). Informally, this definition tells us that if V1 ≥ V2 then
if we know the value of V1 we can compute the value of V2, i.e. V1 is more "informative"

than V2. If V1≤V2 and V2≤V1, we will write V1=V2 and say that the two views are
equivalent. The presented notions of expressiveness and equivalence can be extended to
set of views. A set of views defined by the set of queries S1 is more informative than a set

of views defined by the set of queries S2, or S1≥S2 iff ∀D1,D2∈Models(Σ), [∀Q1∈S1

Q1(D1)=Q1(D2)] =>[∀Q2∈S2 Q2(D1)=Q2(D2)].

Two views V1 and V2, defined over the same set of relations R are complement relative to
R if the set of views {V1,V2} is equivalent to R. Informally given a view V, its
complement view is a view containing the missing information from R. Unless V is
equivalent to R or has nothing in common with R (i.e. V complement is equivalent to R)
V has more than one complementing views relative to R. A translation of a view V with
underlying tables R can be identified uniquely by specifying which complement of V is to
remain unchanged during the update. Note that in the case where V is equivalent to R is
the trivial case in which there is an unique translation from V to R, and the case where V
has nothing in common with R the changes to V don't have to be propagated to R. In
other cases the complement which should remain invariant during updates has to be
specified.

Let's look at the example from figure 9. As well we have the constraints that EMP is a
primary key for the employee table and E.DEP is a foreign key to the department table.
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Suppose we have defined the translations on V2 in such a way that the complement view
V1 is to remain invariant under the translation. Then if employee A is replaced by
employee F in V2, employee A will be replaced by employee F in table X and Y will
remain unchanged. On the other hand note that if a view V3=X is to be the invariant
compliment of V2 than the above update will be unfeasible.

This example shows that by specifying what compliment of the view is to remain
invariant will restrict the number of possible translations of an update to the view to at
most one, i.e. in some cases a translation may me unfeasible. We can allow only updates
to materialized views, for which there is a translation relative to the specified invariant
compliment. This can be done by "compiling" the invariant complaint constraint in
update constraint. In the above example, if V3 is chosen as the invariant complement of
V2, then a corresponding update constraint will be (FALSE, FALSE,t .new(EMP) =
t.old(EMP)), i.e. only modifications on the MGR attribute are allowed.

The presented model of disallowing changes to the selected complement is considered by
some to be too restrictive. Other modals for selecting unique translations have also been
developed based on other factors.

3.2 Bibliographical Notes
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The presented in this section material is from [BaSp81] and [Kele95]. Related material
on the problem can be found in [Kele82], [Kele85],[Kele86],[DaBe78], [DaBe82] and
[Furt79].

4. Constraint Compilation

The problem of constraint compilation is to enforce static integrity constraints by
"compiling" them in appropriate update constraints. When such update constraints are
imposed, the validity relative to the compiled integrity constraints will be guaranteed.

4.1 Defining integrity constraints

Integrity constraints in their most general form can be expressed as:

(Q1x1) ...(Qnxn)∨Ai

where Q1 through Qn are existential or universal quantifiers and x1 trough xn are variables
appearing in the predicates Ai. Each predicate Pi can be a positive or a negative literal.
Each literal is either of the form P(x1,...xk,Q(x1,...xk)) where Q is a query over the
database on which the integrity constraint is defined. The predicate P is a build in

predicate like <,=,∈. For example suppose we have the database
EMP(ENO,ENAME,TITLE), PROJ(PNO, PNAME,BUDGET). Then, we can express
the constraint that the total duration for all employees in the CAD project is less than 100
as (this example is from [ÖzVa99]):

∀j {[ PROJ(j)]=>[j∈(select * from PROJ as P where P.NAMD="CAD") => (select
sum(G.DUR) from ASG as G where G.PNO=j.PNO)<100)]}

4.2 Constraint Enforcement

One example of compiling integrity constraints was already given in Section 1.1.1. In
this section we will show a more complicate example that can use materialized views to
perform integrity constraint enforcement.

Let's go back to the example from the previous sub-section. To implement the constraint:
the total duration for all employees in the CAD project is less than 100 hold we may
store the current total duration for all employees in the CAD project as a materialized
view V with single attribute A. Then, we may specify the update constraint

(t=∅,FALSE,t(new).A<100) for the materialized view V. This constraint specifies that
we may insert a tuple in V only if it is empty, we may not delete tuples from V and we
may modify the value of V only if the newly inserted value is less than 100. As it can be
seen this materialized view algorithm is more powerful then the simple condition
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compilation algorithm presented in Section 1.1.1. The disadvantage of this algorithm is
the added load of maintaining one more materialized view.

4.3. Bibliographical Notes

The presented in this section material is from [ÖzVa99], [SiVa84] and [Cive88].

5. Integrity Constraint Restoring Algorithms

In a distributed database constraints may often be violated. This can be a result of
allowing updates to the database that violates the integrity constraints, or as a result of
constraints imposed on materialized views.

5.1. The algorithm

Let Σ be a database schema and IC be a set of integrity constraints. Let Models(Σ,IC) be
the set of all instances of Σ that don't violate the integrity constraints IC. Let's define the
"distance" between two instances of Σ as the minimum number of insertions and
deletions that have to be performed to transfer one of the database to the other. If D1 and
D2 are databases we will denote the distance between them as |D1-D2|. Now we will
define the set of repairs of a database instance D of Σ, relative to Σ and IC as:

Repair(D,Σ,IC) = {D' | D'∈Models(Σ,IC) ∧ [∀(D''∈Models(Σ,IC)) |D-D'|<=|D-D''|]}

In words, the set of repairs of a database instance D is the set of databases that are closest
to it relative to the defined metric and satisfy the IC. Note that there may be more than
one repairs for a given database.

Let's look two examples. Consider the table R={(1,2),(1,3),(2,1)}, where the first
attribute is a key. The set of minimal repairs is {{(1,2),(2,1)},{(1,3),(2,1)}}. Consider

the tables R1={(1,2),(2,1)} and R2={(1)} and the constraint R1.2 ⊆ R2.1. One possible
repair is to delete the tuple (1,2) from R1 and a second possible repair is to add the tuple
(2) to R2. Note that in general there may be exponentially many repairs to the number of
tuples in a table, but this is not a problem because we are looking for any repair.

Note that a repair can have a cascading effective. This because a repair is an update and
when it is performed other integrity or duplication constraints may be violated as a result.
The termination of such a cascading algorithm is not guaranteed. A possible solution to
this problem is exploring conflict graphs containing the data objects that violate integrity
or duplication constraints.

5.2. Bibliographical Notes
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The material in this section was based solely on [ABC99] as one of the unique references
in the area of repairing invalid databases.

6. Conclusion

In this paper we presented a formal framework for specifying and imposing constraints
on the data in a distributed database environment. Although imposing replication
constraints and imposing integrity constraints are inherently related, we only hinted on
their relationship. Problems on how integrity constraint imposing algorithms can
interfere with duplication constraint imposing algorithms or update constraint imposing
algorithms were not covered. Synchronizing the three type of algorithms that guarantee
the validity of integrity, update and duplication constraints is an open research problem.
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