
Aameri & Allin, CSC384, University of Toronto, Winter 2020

Today we'll  introduce Bayesian 
Networks.

This material is covered in chapters 13 and 14. Chapter 13 gives 
basic background on probability and Chapter 14 talks about 

Bayesian Networks.  This includes methods for exact reasoning in 
Bayes Nets as well as approximate reasoning.

Bayesian Networks

1



CSC384  Introduction to Artificial Intelligence

Benefits of Independence

• Complete independence reduces both representation
of joint and inference from O(2n) to O(n)!

• Unfortunately, such complete mutual independence is
very rare. Most realistic domains do not exhibit this
property.

• Fortunately, most domains do exhibit a fair amount of
conditional independence. And we can exploit conditional
independence for representation and inference as well.

• Bayesian networks do just this.



CSC384  Introduction to Artificial Intelligence

Exploiting Conditional 
Independence

Let’s see what conditional independence buys us, computationally

Consider a story:

“If Craig woke up too early (E is true), Craig probably needs coffee (C); if 
Craig needs coffee, he's likely angry (A). If he is angry, he has an increased 
chance of bursting a brain vessel (B). If he bursts a brain vessel, Craig is quite 
likely to be hospitalized (H).”

E C B HA

E – Craig woke too early     A – Craig is angry  H – Craig hospitalized
 C – Craig needs coffee     B – Craig burst a blood vessel



CSC384  Introduction to Artificial Intelligence

Cond’l Independence in our Story

If you knew E, C, A, or B, your assessment of P(H) would change. 

• E.g., if any of these are seen to be true, you would increase P(H) and
decrease P(~H).

• This means H is not independent of E, or C, or A, or B.

If you knew B, you’d be in good shape to evaluate P(H).  You would not 
need to know the values of E, C, or A.  The influence these factors have 
on H is mediated by B.

• Craig doesn't get sent to the hospital because he's angry, he gets sent
because he's had an aneurysm.

• So H is independent of E, and C, and A, given B

E C B HA



CSC384  Introduction to Artificial Intelligence

Cond’l Independence in our Story

Similarly:

•B is independent of E, and C, given A

•A is independent of E, given C

This means that:

•P(H | B, {A,C,E} )  =  P(H|B)

•i.e., for any subset of {A,C,E}, this relation holds

•P(B | A, {C,E} ) = P(B | A)

•P(A | C, {E} ) = P(A | C)

•P(C | E) and P(E)   don’t “simplify”

E C B HA



CSC384  Introduction to Artificial Intelligence

Cond’l Independence in our Story

By the chain rule (for any instantiation of H…E):

P(H,B,A,C,E) =  P(H|B,A,C,E) P(B|A,C,E) P(A|C,E) P(C|E) P(E)

By our independence assumptions:

P(H,B,A,C,E) =  P(H|B) P(B|A) P(A|C) P(C|E) P(E)

We can specify the full joint by specifying five local conditional 
distributions (joints): P(H|B); P(B|A); P(A|C); P(C|E); and P(E) 

E C B HA



CSC384  Introduction to Artificial Intelligence

Adding Numbers

Specifying the joint requires only 9 parameters (if we note that half of these are “1 
minus” the others), instead of 31 for explicit representation

• That means inference is linear in the number of variables instead of
exponential!

• Moreover, inference is linear generally if dependence has a chain structure

E C B HA

P(C|E)     = 0.9
P(~C|E)   = 0.1
P(C|~E)   = 0.5
P(~C|~E) = 0.5

P(E)   = 0.7
P(~E) = 0.3

P(H|B)     = 0.9
P(~H|B)   = 0.1
P(H|~B)   = 0.1
P(~H|~B) = 0.9

P(B|A)     = 0.2
P(~B|A)   = 0.8
P(B|~A)   = 0.1
P(~B|~A) = 0.9

P(A|C)     = 0.7
P(~A|C)   = 0.3
P(A|~C)   = 0.0
P(~A|~C) = 1.0



CSC384  Introduction to Artificial Intelligence

Making Inferences

Want to know P(A)? Proceed as follows:

E C B HA

These are all terms specified in our local distributions!



CSC384  Introduction to Artificial Intelligence

Making Inferences

Computing P(A) in more concrete terms:

P(C) = P(C|E)P(E) + P(C|~E)P(~E)  = 0.9 * 0.7 + 0.5 * 0.3  = 0.78

P(~C) = P(~C|E)P(E) + P(~C|~E)P(~E) = 0.22

P(~C) = 1 - P(C), as well

P(A) = P(A|C)P(C) + P(A|~C)P(~C) = 0.7 * 0.78 + 0.0 * 0.22 = 0.546

P(~A) = 1 – P(A) = 0.454 

E C B HA

P(C|E)     = 0.9
P(~C|E)   = 0.1
P(C|~E)   = 0.5
P(~C|~E) = 0.5

P(E)   = 0.7
P(~E) = 0.3

P(A|C)  = 0.7
P(~A|C)   = 0.3
P(A|~C)   = 0.0
P(~A|~C) = 1.0

P(H|B)     = 0.9
P(~H|B)   = 0.1
P(H|~B)   = 0.1
P(~H|~B) = 0.9

P(B|A)  = 0.2
P(~B|A)  = 0.8
P(B|~A)  = 0.1
P(~B|~A) = 0.9



CSC384  Introduction to Artificial Intelligence

Bayesian Networks

• The structure we just described is a Bayesian network. A
BN is a graphical representation of the direct
dependencies over a set of variables, together with a set
of conditional probability tables quantifying the strength
of those influences.

• Bayes nets generalize the above ideas in very interesting
ways, leading to effective means of representation and
inference under uncertainty.



CSC384  Introduction to Artificial Intelligence

Bayesian Networks
A BN over variables {X1, X2,…, Xn}  consists of:

a directed acyclic graph (DAG) whose nodes are the variables

a set of conditional probability tables (CPTs) that specify  P(Xi | 
Parents(Xi)) for each  Xi

Key notions (see text for defn’s, all are intuitive):

parents of a node: Par(Xi) 

children of node

descendents of a node

ancestors of a node

family: set of nodes consisting of Xi and its parents

CPTs are defined over families in the BN 



Another Bayesian Network

A: Aameri gives the lecture 

S: It is sunny out

L: The lecturer arrives late

Assume that all instructors may arrive late in bad weather.  Some 
instructors may be more likely to be late than others.



A: Aameri gives the lecture 

S: It is sunny out

L: The lecturer arrives late

Assume that all instructors may arrive late in bad weather.  
Some instructors may be more likely to be late than others.

We'll start by writing down what we know:
P(S|A) = P(S), P(S) = 0.3, P(A) = 0.5

Lateness is not independent of the weather or the lecturer.

Another Bayesian Network



A: Aameri gives the lecture 

S: It is sunny out

L: The lecturer arrives late

What does this mean? All instructors may arrive late in bad 
weather.  Some instructors may be more likely to be late than 

others.

P(S|A) = P(S), P(S) = 0.3, P(A) = 0.5

We need to formulate P(L|S,A) for all of the values of S and A.

Another Bayesian Network



A: Aameri gives the lecture 

S: It is sunny out

L: The lecturer arrives late

Because of conditional independence, we only need 6 values to 
specify the full joint instead of 7. Conditional independence leads to 

computational savings!

Another Bayesian Network

P(S|A) = P(S), P(S) = 0.3, P(A) = 0.5

P(L|S,A) = 0.05, P(L|S,~A) = 0.1, P(L|~S,A) = 0.1, P(L|~S,~A) = 0.2



A: Aameri gives the lecture 

S: It is sunny out

L: The lecturer arrives late

How can we calculate P(L,S,A)? Or P(L,~S,A)?

Another Bayesian Network

P(S|A) = P(S), P(S) = 0.3, P(A) = 0.5

P(L|S,A) = 0.05, P(L|S,~A) = 0.1, P(L|~S,A) = 0.1, P(L|~S,~A) = 0.2



Drawing the Network

A S

L
A S P(L=T|A,S)

L T T 0.05

L T F 0.1

L F T 0.1

L F F 0.2

A T 0.5 S T 0.3

P(S|A) = P(S), P(S) = 0.3, P(A) = 0.5

P(L|S,A) = 0.05, P(L|S,~A) = 0.1, P(L|~S,A) = 0.1, P(L|~S,~A) = 0.2



Drawing the Network

Read the two arrows into L to 
mean “If I want to know the  
value of L it may help me to  

know A and to know S.”

Read the absence of an 
arrow between S and A to 
mean “It  will not help me 

predict A if I  just know the 
value of S” A S

L
A S P(L=T|A,S)

L T T 0.05

L T F 0.1

L F T 0.1

L F F 0.2

A T 0.5 S T 0.3



Back to the network
Now let’s suppose we have these three events: 

A: Aameri gives the lecture

L: The lecturer arrives late 

R : The lecturer concerns Reasoning with Bayes’ Nets 

And we know:

• Allin has a higher chance of being late than Aameri.

• Allin has a higher chance of giving lectures about reasoning 
with BNs

What kind of independences exist in our graph?



Back to the network
Once you know who the lecturer is, then whether 
they arrive late doesn’t affect whether the lecture 
concerns Reasoning with Bayes’ Nets, i.e.:

P(R|A,L) = P(R|A)

P(R| ~A,L) = P(R| ~A) A

L R

Read this diagram as  
“Given knowledge of A, 

knowing about L won’t tell anything  
more about R.”



The network reflects 
conditional independences

A

L R

R is conditionally independent of L given A (and vice versa)

To specify CPTs, we 
first write down P(A).  
Then, because L and 
R are only directly  
influenced by M, we 
write down P(L|A) and 
P(R|A).

A P(L=T|A)

L T 0.085

L F 0.17

A T 0.5

A P(R=T|A)

R T 0.3

R F 0.6



The network reflects 
conditional independences

A

L R

R is conditionally independent of L given A (and vice versa)

What is P(L,R,A)? 

What is P(~L,R,A)?

A P(L=T|A)

L T 0.085

L F 0.17

A T 0.6

A P(R=T|A)

R T 0.3

R F 0.6



A: Aameri gives the lecture

L: The lecturer arrives late 

R : The lecturer concerns Reasoning with Bayes’ Nets

S: It is sunny out

T: The lecture starts before 15 minutes past the hour. 

- T is only directly influenced by L (i.e. T is conditionally independent of R,A,S given L)

- L is only directly influenced by A and S (i.e. L is conditionally independent of R given A & S)

- R is only directly influenced by A (i.e. R is conditionally independent of L,S, given A)

- A and S are independent

Building a Bayes Net



Building a Bayes Net

Step One: Add variables

A: Aameri gives the lecture

L: The lecturer arrives late 

R : The lecturer concerns Reasoning 
with Bayes’ Nets

S: It is sunny out

T: Lecture starts < 15 minutes past. 



Building a Bayes Net

Step Two:  add links.

The link structure must be acyclic.

If you assign node Y the parents X1, X2,…, Xn, you are promising  
that, given {X1, X2,…, Xn}, Y is conditionally independent of any other 
variable that’s not a descendent of Y

A: Aameri gives the lecture

L: The lecturer arrives late 

R : The lecturer concerns Reasoning 
with Bayes’ Nets

S: It is sunny out

T: Lecture starts < 15 minutes past. 



Building a Bayes Net

Step Three: add a conditional probability table (CPT) for each node.

The table for X must define P(X|Parents) and for all combinations of the 
possible parent values.

A: Aameri gives the lecture

L: The lecturer arrives late 

R : The lecturer concerns Reasoning 
with Bayes’ Nets

S: It is sunny out

T: Lecture starts < 15 minutes past. 



Building a Bayes Net

You can deduce many probability relations from a Bayes Net.

Note that variables that are not directly connected may still be correlated.

A: Aameri gives the lecture

L: The lecturer arrives late 

R : The lecturer concerns Reasoning 

with Bayes’ Nets

S: It is sunny out

T: Lecture starts < 15 minutes past. 



Building a Bayes Net
It is always possible to construct a Bayes net to 
represent any distribution over the variables X1,
X2,…, Xn, using any ordering of the variables.

Take any ordering of the variables (say, the order given). From the chain rule we 
obtain. 

Pr(X1,…,Xn) = Pr(Xn|X1,…,Xn-1)Pr(Xn-1|X1,…,Xn-2)…Pr(X1) 

Now for each Xi go through its conditioning set X1,…,Xi-1, and iteratively remove all 
variables Xj such that Xi is conditionally independent of Xj given the remaining 
variables. Do this until no more variables can be removed. 

The final product specifies a Bayes net.



Causal Intuitions

• The BN can be constructed using an arbitrary
ordering of the variables.

• However, some orderings will yield BN’s with very
large parent sets. This requires exponential space, and
(as we will see later) exponential time to perform
inference.

• Empirically, and conceptually, a good way to construct
a BN is to use an ordering based on causality. This
often yields a more natural and compact BN.



Causal Intuitions
Malaria, the flu and a cold all “cause” aches. So use the ordering 
that places causes before effects.  Variables are Malaria (M), Flu 

(F), Cold (C), Aches (A):

P(M,F,C,A) = P(A|M,F,C) P(C|M,F) P(F|M) Pr(M)

Each of these disease affects the probability of aches, so the first 
conditional probability does not change.
It is however reasonable to assume that these diseases are 
independent of each other: having or not having one does not 
change the probability of having the others. 

So P(C|M,F) = P(C) and P(F|M) = P(F)



Causal Intuitions
This yields a fairly simple Bayes net. 

We only need one big CPT, involving the family 
of “Aches”.



Causal Intuitions
Suppose we build the BN for distribution P using the opposite ordering, i.e., 

we use ordering Aches, Cold, Flu, Malaria 

P(A,C,F,M) = P(M|A,C,F) P(F|A,C) P(C|A) P(A)

We can’t reduce P(M|A,C,F). The probability of Malaria is clearly affected by 
knowing Aches. What about knowing Aches and Cold, or Aches and Cold 
and Flu?

Probability of Malaria is affected by both of these additional pieces of 
knowledge. 

Knowing Cold and Flu lowers the probability that Aches are related to 
Malaria since they “explain away” the Aches!



Causal Intuitions
We obtain a much more complex Bayes net. In fact, we 
obtain no savings over explicitly representing the full joint 
distribution (i.e., representing the probability of every 
atomic event).



Bayes Net Example
I'm at work, neighbour John calls to say my alarm is ringing, 
but neighbour Mary doesn't call. Sometimes it's set off by 
minor earthquakes. Is there a burglar? 

Variables: Burglary, Earthquake, Alarm, JohnCalls, 
MaryCalls 

The network topology reflects "causal" knowledge: 

• A burglar can set the alarm off

• An earthquake can set the alarm off

• The alarm can cause Mary to call

• The alarm can cause John to call



Burglary Example

# of Params:1 + 1 + 4 + 2 + 2 = 10  (vs. 25-1 = 31)

• A burglar can set the alarm off

• An earthquake can set the alarm off

• The alarm can cause Mary to call

• The alarm can cause John to call



Burglary Example
Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? 



Burglary Example
Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? 



Burglary Example
Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)?  

P(B | A, J, M) = P(B)?



Burglary Example

Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? Yes 

P(B | A, J, M) = P(B)? No 

P(E | B, A ,J, M) = P(E | A)? 

P(E | B, A, J, M) = P(E | A, B)?



Burglary Example

Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? Yes 

P(B | A, J, M) = P(B)? No 

P(E | B, A ,J, M) = P(E | A)? No 

P(E | B, A, J, M) = P(E | A, B)? Yes



Burglary Example
Deciding conditional independence is hard in non-causal directions! 

(Causal models and conditional independence seem hardwired in humans!) 

Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed



Aameri & Allin, CSC384, University of Toronto, Winter 2020

Inference in Bayes Nets

Given a Bayes net  
P(X1, X2,…, Xn) = P(Xn|P(Parents(Xn))) *  

 P(Xn-1 | P(Parents(Xn-1))) * … * P(X1| P(Parents(X1))) 
And some evidence  
 E = {a set of values for some of the variables}  
we want to compute the new probability distribution 
 P(Xk| E) 

That is, we want to figure our  
 P(Xk= d |E) for all d∈ Dom[Xk]



Inference in Bayes Nets

• We might infer probability of different
diseases given symptoms, or probability of
hail storms given different metrological
evidence, etc.

• In such cases getting a good estimate of
the probability of the unknown event
allows us to respond more effectively
(gamble rationally)



Inference in Bayes Nets

In the Alarm example: 

• P(Burglary,Earthquake, Alarm, JohnCalls, MaryCalls) = 
   P(Earthquake) * P(Burglary) * 
   P(Alarm|Earthquake,Burglary) * 
   P(JohnCalls|Alarm) * P(MaryCalls|Alarm) 

• We may want to infer things like 
P(Burglary=true| MaryCalls=false, JohnCalls=true)



Variable Elimination

If the network has a lot of variables, making exact 
inferences can be computationally hairy. 

Variable elimination uses the product decomposition 
that defines a Bayes Net and the summing out rule 
to compute probabilities conditioned on evidence 

from information in the network (CPTs).  

VE helps to reduce some of computation required to 
make exact inferences.



Example (Binary valued Variables)
P(A,B,C,D,E,F,G,H,I,J,K) = 
  P(A)  
x P(B) 
x P(C|A) 
x P(D|A,B) 
x P(E|C) 
x P(F|D) 
x P(G) 
x P(H|E,F) 
x P(I|F,G) 
x P(J|H,I) 
x P(K|I)



Example

P(A,B,C,D,E,F,G,H,I,J,K) = 
P(A)P(B)P(C|A)P(D|A,B)P(E|C)P(F|D)P(G)P(H|E,F) 
P(I|F,G)P(J|H,I)P(K|I)

Say that E (our evidence) = {H=true, I=false}, and we want to 
know 

P(D|h,-i)  (h: H is true, -h: H is false)

= P(d,h,-i)/N and P(-d,h,-i)/N where  

N = P(h,-i) = P(d,h,-i) + P(-d,h,-i) 

N can be considered a “normalizing” constant.



Example

First, we write as a sum for each value of D (i.e. D = d and D = -d)  

∑A,B,C,E,F,G,J,K P(A,B,C,d,E,F,h,-i,J,K) = P(d,h,-i)  

∑A,B,C,E,F,G,J,K P(A,B,C,-d,E,F,h,-i,J,K) = P(-d,h,-i) 

We start by computing P(d,h,-i). Use Bayes Net product 
decomposition to rewrite the summation: 

∑A,B,C,E,F,G,J,K P(A,B,C,d,E,F,h,-i,J,K) 
= ∑A,B,C,E,F,G,J,K P(A)P(B)P(C|A)P(d|A,B)P(E|C)  

P(F|d)P(G)P(h|E,F)P(-i|F,G)P(J|h,-i) 
           P(K|-i)  



Example

Next, rearrange summations so that we are not summing over 
variables that do not depend on the summed variable.

= ∑A,∑B,∑C,∑E,∑F,∑G,∑J,∑K  P(A)P(B)P(C|A)P(d|A,B)P(E|C) P(F|
d)P(G)P(h|E,F)P(-i|F,G)P(J|h,-i) P(K|-i)

= ∑A P(A) ∑B P(B) ∑C P(C|A)P(d|A,B) ∑E P(E|C)  
 ∑F P(F|d) ∑G P(G)P(h|E,F)P(-i|F,G) ∑J P(J|h,-i) 
 ∑K P(K|-i) 

= ∑A P(A) ∑B P(B) P(d|A,B) ∑C P(C|A) ∑E P(E|C)  
 ∑F P(F|d) P(h|E,F)∑G P(G) P(-i|F,G) ∑J P(J|h, -i) 
 ∑K P(K|-i)



Example

Now start computing from the last summation to the first. 

  ∑A P(A) ∑B P(B) P(d|A,B) ∑C P(C|A) ∑E P(E|C)  
     ∑F P(F|d) P(h|E,F)∑G P(G) P(-i|F,G)  
 ∑J  P(J|h,-i) 
  ∑K P(K|-i) 

∑K P(K|-i) = P(k|-i) + P(-k|-i) = c1 

  ∑A P(A) ∑B P(B) P(d|A,B) ∑C P(C|A) ∑E P(E|C)  
     ∑F P(F|d) P(h|E,F)∑G P(G) P(-i|F,G)  
 ∑J  P(J|h,-i) c1



Example

  ∑A P(A) ∑B P(B) P(d|A,B) ∑C P(C|A) ∑E P(E|C)  
 ∑F P(F|d) P(h|E,F)∑G P(G) P(-i|F,G)  
∑J  P(J|h,-i) c1

In this expression, variable K has been eliminated.
We can move c1 to the front of the equation as it does not 
depend on other variables.

  c1 ∑A P(A) ∑B P(B) P(d|A,B) ∑C P(C|A) ∑E P(E|C)  
 ∑F P(F|d) P(h|E,F)∑G P(G) P(-i|F,G)  
∑J  P(J|h,-i)



Example

  c1 ∑A P(A) ∑B P(B) P(d|A,B) ∑C P(C|A) ∑E P(E|C)  
 ∑F P(F|d) P(h|E,F)∑G P(G) P(-i|F,G)  
∑J  P(J|h,-i) 

∑JP(J|h,-i) = ∑JP(J|h,-i)
= (P(j|h,-i) + P(-j|h,-i))  
= c2

Now we’ve eliminated variable J. 

  c1 c2 ∑A P(A) ∑B P(B) P(d|A,B) ∑C P(C|A) ∑E P(E|C)  
 ∑F P(F|d) P(h|E,F)∑G P(G) P(-i|F,G)



Example

  c1 c2 ∑A P(A) ∑B P(B) P(d|A,B) ∑C P(C|A) ∑E P(E|C)∑F 
P(F|d) P(h|E,F)∑G P(G) P(-i|F,G)

∑G P(G) P(-i|F,G) 
     =(P(g)P(-i|F,g) + P(-g)P(-i|F,-g)) 

P(-i|F,g) depends on the value of F, so 
  this is not a single number. 

Instead, its value depends on the assignment to F.  
But once F is fixed as f or -f, the value of  P(-i|F,g) is 
also fixed.



Example

c
1 
c

2 
∑

A
 P(A) ∑

B
 P(B) P(d|A,B) ∑

C
 P(C|A) ∑

E
 P(E|C)∑

F
 P(F|d) P(h|

E,F)∑
G
 P(G) P(-i|F,G)

∑
G
 P(G) P(-i|F,G)  

     =(P(g)P(-i|F,g) + P(-g)P(-i|F,-g)) 

To manage, we introduce a function to represent this sum: 

f1(F) = P(g)P(-i|F,g) + P(-g)P(-i|F,-g) 

We must store these fixed numbers to represent the function: 

f1(f) = P(g)P(-i|f,g) + P(-g)P(-i|f,-g)  
f1(-f) = P(g)P(-i|-f,g) + P(-g)P(-i|-f,-g)



Example

  c1 c2 ∑A P(A) ∑B P(B) P(d|A,B) ∑C P(C|A) ∑E P(E|C)∑F 
P(F|d) P(h|E,F)f1(F)

∑F P(F|d) P(h|E,F)f1(F) = P(f|d) P(h|E,f)f1(f) + P(-f|d) 
P(h|E,-f)f1(-f) 

This sum depends on E, so we introduce a function of E 

f2(E) = P(f|d) P(h|E,f)f1(f) + P(-f|d) P(h|E,-f)f1(-f)

Again store two fixed values, f2(e) and f2(-e), to represent 
this function.



Variable Elimination (VE)

• We can continue this way, eliminating one variable after
another by introducing functions.  At the end of the
process we will sum out A and be left with P(d,h,-i).

• We can repeat the process to compute P(-d,h,-i).
• Remember the normalizing constant (N) is P(d,h,-i) +

P(-d,h,-i). If we normalize the numbers (ensure they
sum to one) we will have P(d|h,-i) and P(d|h,i).

• Alternately, we could consider D to be the last variable
in the elimination process, and end our process when
by computing f(D). The fixed values, f(d) and f(-d), will
be the values we want as they correspond to P(d|h,-i)
and P(d|h,i).



Variable Elimination (VE)

• This process is called variable elimination (VE)
• VE computes intermediate functions and stores

values that we reuse many times during
computations.

• In this way variable elimination is a form of dynamic
programming.  Dynamic programming is a technique
that stores solutions to sub-computations in order to
avoid repeating them many times over.



Relevant (return to this later)
Note that in the sum 

∑A P(A) ∑B P(B) P(d|A,B) ∑C P(C|A) ∑E P(E|C) ∑F P(F|d) P(h|
E,F)∑G P(G) P(-i|F,G) ∑J  P(J|h,-i)∑K P(K|-i)  

∑K P(K|-i) = 1 (Why?) 

This means ∑J  P(J|h,-i)∑K P(K|-i) = ∑J  P(J|h,-i) 

By the same reasoning, ∑J  P(J|h,-i) = 1.  

So we can, in theory, drop these last two terms from the 
computation.  The variables J and K are not relevant given our 
query D and evidence (–i and –h). But for now we will keep the 
terms; we will revisit relevance later.



Variable Elimination (VE)

• In general, each stage VE sums out the innermost variable,
creating a function over any variables in that sum.

• Each function is represented as a table of numbers: one
number for each different instantiation of the variables in the
sum.

• The size of the tables is exponential in the number of
variables that appear in the sum, e.g., 

∑FP(F|D) P(h|E,F) f1(F) 

depends on the value of D and E, thus we will obtain
|Dom[D]|*|Dom[E]| different numbers in the resulting table.   



Factors

• We call the tables of values computed by VE
factors.

• Note that the original probabilities that appear in
the summation, e.g., P(C|A), are also tables of
values (one value for each instantiation of C and A).

• Thus we also call the original CPTs factors.
• Each factor is a function of some variables, e.g.,

P(C|A) = f(A,C): it maps each value of its arguments
onto a number.
–A tabular representation is exponential in the

number of variables in the factor.



Operations on Factors

• If we examine the summation process we
will see that various operations
repeatedly occur on factors.

• Notation: f(X,Y) denotes a factor over the
variables X and Y (where X and Y are sets
of variables)



The Product of Two Factors
• Let f(X,Y) & g(Y,Z) be two factors with variables Y in
common

• The product of f and g, denoted h = f x g  (or sometimes
just h = fg), is defined as:

h(X,Y,Z) = f(X,Y) x g(Y,Z)

f(A,B) g(B,C) h(A,B,C)

ab 0.9 bc 0.7 abc 0.63 ab~c 0.27

a~b 0.1 b~c 0.3 a~bc 0.08 a~b~c 0.02

~ab 0.4 ~bc 0.8 ~abc 0.28 ~ab~c 0.12

~a~b 0.6 ~b~c 0.2 ~a~bc 0.48 ~a~b~c 0.12



Summing a Variable Out of a Factor
•Let f(X,Y) be a factor
•We can sum out variable X from  f  to
produce a new factor h = ΣX f,  which is
defined: h(Y) = Σx∊Dom(X) f(x,Y)

f(A,B) h(B)

ab 0.9 b 1.3

a~b 0.1 ~b 0.7

~ab 0.4

~a~b 0.6



Restricting a Factor
• Let f(X,Y) be a factor
• We can restrict factor  f to X = a by setting X to the value
x  and “deleting” incompatible elements of f’s domain .

Define  h = fX=a   as: h(Y) = f(a,Y)

f(A,B)
h(B) for 
fA=a

ab 0.9 b 0.9

a~b 0.1 ~b 0.1

~ab 0.4

~a~b 0.6



Variable Elimination the Algorithm
Given query var Q, evidence vars E (variables 

observed to have values e), and remaining vars 
Z. Let F be factors in original CPTs.

1. Replace each factor f∈F that mentions a variable(s) in E
with its restriction fE=e (this might yield a “constant” factor)

2. For each Zj - in the order given - eliminate Zj ∈ Z as follows: 
(a) Compute new factor  gj = ∑Zj

 f1 x f2 x … x fk, where the fi are

the factors in F that include Zj

(b) Remove the factors fi (that mention Zj) from F and add new
factor gj to F

3. The remaining factors at the end of this process will refer only to the
query variable Q.  Take their product and normalize to produce 
P(Q|E).



VE: Example

Step 1 (Restriction): Replace f4(C,D) with f5(C) = f4(C,d)  
Step 2 (Eliminate C): Compute & add f6(A,B)= ΣC f5(C) f3(A,B,C) to list of factors.

Remove: f3(A,B,C), f5(C)  
Step 3 (Eliminate B): Compute & add f7(A) = ΣB f6(A,B) f2(B) to list of factors.

Remove: f6(A,B), f2(B)  
Step 4 (Normalize Final Factors): f7(A), f1(A). The product f1(A) x f7(A) is (un-

normalized) posterior for A. So we normalize: 
P(A|d) = α f1(A) x f7(A)  
where α = 1/∑A f1(A)f7(A)

Factors: f1(A) f2(B) f3(A,B,C) f4(C,D) 

Query: P(A)?  
Evidence: D = d
Elimination Order: C, B

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)



Numeric Example
Here’s an example with some .  We want P(C) 
given no evidence.

B CA
f1(A) f2(A,B) f3(B,C)

f1(A) f2(A,B) f3(B,C)
f4(B) 

ΣA f2(A,B)f1(A)
f5(C) 

ΣB f3(B,C) f4(B)

a 0.9 ab 0.9 bc 0.7 b 0.85 c 0.625

~a 0.1 a~b 0.1 b~c 0.3 ~b 0.15 ~c 0.375

~ab 0.4 ~bc 0.2

~a~b 0.6 ~b~c 0.8



VE: Buckets as a Notational Device

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C:

2. F:

3. A:

4. B:

5. E:

6. D:



VE: Buckets—Place Original Factors in first 
applicable bucket.

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A)

4. B: f2(B)

5. E:

6. D:



VE: Eliminate the variables in order, placing 
new factor in first applicable bucket.

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B)

5. E:

6. D:

1. ΣC f3(A,B,C) x f4(C,D) x f5(C,E) 
= f7(A,B,D,E)



VE: Eliminate the variables in order, placing 
new factor in first applicable bucket.

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B)

5. E: f8(E,D)

6. D:

2. ΣF f6(E,D,F) =  f8(E,D)



VE: Eliminate the variables in order, placing 
new factor in first applicable bucket.

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B), f9(B,D,E)

5. E: f8(E,D)

6. D:

3. ΣA f1(A) x f7(A,B,D,E) 
=  f9(B,D,E)



VE: Eliminate the variables in order, placing 
new factor in first applicable bucket.

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B), f9(B,D,E)

5. E: f8(E,D), f10(D,E)

6. D:

4. ΣB f2(B) x f9(B,D,E)
=  f10(D,E)



VE: Eliminate the variables in order, placing 
new factor in first applicable bucket.

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B), f9(B,D,E)

5. E: f8(E,D), f10(D,E)

6. D: f11(D)

5. ΣE f8(E,D) x f10(D,E)
=  f11(D)

f11 is the final answer, once we 
normalize it.



Hypergraphs
A hypergraph has vertices just like an ordinary graph, but 
instead of edges between two vertices X↔Y it contains 
hyperedges. 
• A hyperedge is a set of vertices (i.e., potentially more

than one)

A

B

C

D

E
{A,B,D} 
{B,C,D} 
{E,D}



Hypergraph

Hypergraph of Bayes Net includes: 
– The set of vertices are the nodes of the Bayes

net.
– The hyperedges are the families appearing in

each CPT.
{Xi} ∪ Parents(Xi) 



Variable Elimination in the HyperGraph

To eliminate variable Xi in the hypergraph we  

– Remove the vertex Xi

– Create a new hyperedge Hi equal to the union
of all of the hyperedges that contain Xi minus
Xi

– Remove all of the hyperedges containing X
from the hypergraph.

– Add the new hyperedge Hi to the hypergraph.



VE Factors

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6E,D,F)

Ordering:  
C,F,A,B,E,D

1. C:

2. F:

3. A:

4. B:

5. E:

6. D:

C
D

A

B

E
F



VE: Place Original Factors in first 
applicable bucket.

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A)

4. B: f2(B)

5. E:

6. D:



VE: Eliminate C, placing new factor f7 in 
first applicable bucket.

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B)

5. E:

6. D:

D

A

B

E
F



VE: Eliminate F, placing new factor f8 in 
first applicable bucket.

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B)

5. E: f8(E,D)

6. D:

D

A

B

E



VE: Eliminate A, placing new factor f9 in 
first applicable bucket.

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B), f9(B,D,E)

5. E: f8(E,D)

6. D:

DB

E



VE: Eliminate B, placing new factor f10 in 
first applicable bucket.

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B), f9(B,D,E)

5. E: f8(E,D), f10(D,E)

6. D:

D

E



VE: Eliminate E, placing new factor f11 in 
first applicable bucket.

C
D

Af1(A)

f3(A,B,C)

f4(C,D)

Bf2(B)

E

f5(C,E)

F

f6(E,D,F)

Ordering:  
C,F,A,B,E,D

1. C: f3(A,B,C), f4(C,D), f5(C,E)

2. F: f6(E,D,F)

3. A: f1(A), f7(A,B,D,E)

4. B: f2(B), f9(B,D,E)

5. E: f8(E,D), f10(D,E)

6. D: f11(D)

D



Complexity of Variable Elimination

P(A,B,C,D,E,F) = 
 P(A)P(B)  
X  P(C|A,B) 
X  P(E|C) 
X P(D|C) 
X P(F|E,D).

C
D

A

B

E
F

C
D

A

B

E
F



Complexity of Variable Elimination

• Eliminate C

C
D

A

B

E
F

D

A

B

E
F



Complexity of Variable Elimination

• Eliminate D

C
D

A

B

E
F

C
A

B

E
F



Complexity of Variable Elimination

• Eliminate A

C
D

A

B

E
F

C
DB

E
F



• Given an ordering π of the variables and an initial hypergraph ℋ
eliminating these variables yields a sequence of hypergraphs 

ℋ = H0, H1,H2,…,Hn

     where Hn contains only one vertex (the query variable). 

• The elimination width of VE reflects the maximum size (number of
variables) of any hyperedge in any of the hypergraphs H0,H1,…,Hn.

• The largest size of any hyperedge in the previous example was 4
({A,B,E,D} in H1 and H2).

Complexity of Variable Elimination



Tree Width

• Given a hypergraph ℋ with vertices {X1,X2,…,Xn} the tree
width (ω) of ℋ is the MINIMUM elimination width of any of the
n! different orderings of the Xi minus 1.

• Thus VE has best case complexity of  2O(ω) where ω is the tree
width of the initial Bayes Net.

o Largest factor takes 2O(ω) space to store

o Largest factor takes 2O(ω) time to process

• In the worst case, the tree width is equal to the number of
variables (minus 1)



Different Orderings = Different Elimination 
Widths

Suppose query variable 
is D. Consider different 
orderings for this 
network  

E,C,A,B,G,H,F : 
• Bad

A,F,H,G,B,C,E: 
• Good



Tree Width
• Exponential in the tree width is the best that VE can do.

– But, finding an ordering that has elimination width equal to tree
width is NP-Hard.
• so in practice there is no point in trying to speed up VE by

finding the best possible elimination ordering.
– Instead, heuristics are used to find orderings with good (low)

elimination widths.
– In practice, this can be very successful. Elimination widths can

often be relatively small, 8-10 even when the network has 1000s of
variables.
• Thus VE can be much more efficient than simply summing the

probability of all possible events (which is exponential in the
number of variables).

• Sometimes, however, the tree width is equal to the number of
variables (minus 1).



Finding Good Orderings

• A polytree is a singly connected Bayes Net: in
particular there is only one path between any
two nodes.

• Good orderings are easy to find for polytrees
– At each stage eliminate a singly connected node.
– Because we have a polytree we are assured that a

singly connected node will exist at each elimination
stage.

– The size of the factors in the tree never increase.



Elimination Ordering: Polytrees
•Eliminating singly connected
nodes allows VE to run in
linear time

•e.g., in this network,
eliminate D, A, C, X1,…; or
eliminate X1,… Xk, D, A C; or
mix it up.

•Result: no factor is ever
larger than original CPTs

•Eliminating B before these
gives factors that include
A,C, X1,… and Xk!!!



Min Fill Heuristic
• A fairly effective heuristic
is to always eliminate next
the variable that creates
the smallest size factor.

• This is called the min-fill
heuristic.
–B creates a factor of size k+2
–A creates a factor of size 2
–D creates a factor of size 1

• This heuristic always solves
polytrees in linear time.



Relevance

•Certain variables have no impact on the query.
For example, in network ABC, computing P(A)
with no evidence requires elimination of B and C.
– But when you sum out these variables, you compute a

trivial factor (that always evaluates to 1); for example:
– Eliminating C: f4(B) = ΣC f3(B,C) = ΣC P(C|B)
– This is 1 for any value of B (e.g., P(c|b) + P(~c|b) = 1)

•No need to think about B or C for this query

B CA



Relevance

•Can restrict attention to relevant variables.
Given query Q, evidence E:
–Q itself is relevant
– if any node Z is relevant, its parents are relevant
– if e∊E is a descendent of a relevant node, then E

is relevant 
•We can restrict our attention to the sub-
network comprising only relevant variables
when evaluating a query Q



Relevance: Examples

•Query: P(F)
–relevant: F, C, B, A

•Query: P(F|E)
–relevant: F, C, B, A
–also: E, hence D, G
–intuitively, we need to compute

P(C|E) to compute P(F|E)
•Query: P(F|H)

–relevant: F, C, B, A
P(A)P(B)P(C|A,B)P(F|C) P(G)P(h|G)P(D|G,C)P(E|D) 

= … P(G)P(h|G)P(D|G,C) ∑EP(E|D) = a table of 1’s 
= … P(G)P(h|G) ∑D P(D|G,C) = a table of 1’s 
= [P(A)P(B)P(C|A,B)P(F|C)] [∑G P(G)P(h|G)]  

[∑GP(G)P(h|G)]  ≠ 1 but irrelevant 
once we normalize, multiplies each value of 
F equally

C

A B

D

E

F

G

H



Relevance: Examples

Query: P(F|E,C) 
– algorithm says all variables except H are relevant; but

really none except C, F (since C cuts of all influence of
others)

– algorithm is overestimating relevant set

C

A B

D

E

F

G

H



Independence in a Bayes Net

•Another piece of information we can obtain from a Bayes
net is the “structure” of relationships in the domain.

• The structure of the BN means: every Xi is conditionally
independent of all of its non-descendants given it
parents:

P(Xi | S ∪ Par(Xi)) = P(Xi | Par(Xi))

for any subset S ⊆ NonDescendents(Xi)



More generally ….
Conditional independencies can be useful in computation, explanation, etc. 
related to a BN 

How do we determine if two variables X, Y are independent given a set of 
variables E? 
• We can use a (simple) graphical property called d-separation

D-separation: A set of variables E d-separates X and Y if it  blocks  every
undirected path in the BN between X and Y (we'll define Blocks next.)

X and Y are conditionally independent given evidence E if E d-separates X and 
Y 

• thus BN gives us an easy way to tell if two variables are independent (set E =
{}) or conditionally independent given E.



What does it mean to 
be blocked?

There exists a variable V on the path such that 
it is in the evidence set E 
the arcs putting V in the path are “tail-to-tail” 

Or, there exists a variable V on the path such that 
it is in the evidence set E 
the arcs putting V in the path are “tail-to-head”

X
V

Y

X

V

Y



What does it mean to 
be blocked?

If the variable V is on the path such that the arcs putting V on the path are 
“head-to-head”, the variables are still blocked .... so long as: 

V is NOT in the evidence set E 
neither are any of its descendants

X

V

Y



Blocking: Graphical 
View



D-separation implies conditional
independence

Theorem [Verma & Pearl, 1998]: If a set of evidence variables E 
d-separates X and Z in a Bayesian network’s graph, then X is
independent of Z given E.



D-Separation: Intuitions

Subway and Therm 
are dependent; but 

are independent 
given Flu (since Flu 

blocks the only 
path)



D-Separation: Intuitions

Aches and Fever are 
dependent; but are 

independent given Flu 
(since Flu blocks the 
only path). Similarly 
for Aches and Therm 

(dependent, but 
indep. given Flu).



D-Separation: Intuitions

Flu and Mal are indep. 
(given no evidence): 

Fever blocks the path, 
since it is not in 

evidence, nor is its 
descendant Therm. 

Flu and Mal are 
dependent given Fever 

(or given Therm): 
nothing blocks path now. 



D-Separation: Intuitions

Subway, ExoticTrip are 
indep.;  

they are dependent 
given Therm;  

they are indep. given 
Therm and Malaria. This 

for exactly the same 
reasons for Flu/Mal 

above.



D-Separation Example

In the following network determine 
if A and E are independent given 
the evidence.

C

A

E

D

B

F

G

H

1. A and E given no evidence?
2. A and E given {C}?
3. A and E given {G,C}?
4. A and E given {G,C,H}?
5. A and E given {G,F}?
6. A and E given {F,D}?
7. A and E given {F,D,H}?
8. A and E given {B}?
9. A and E given {H,B}?
10. A and E given {G,C,D,H,D,F,B}?



D-Separation Example

In the following network determine 
if A and E are independent given 
the evidence.

C

A

E

D

B

F

G

H

1. A and E given no evidence? N
2. A and E given {C}? N
3. A and E given {G,C}? Y
4. A and E given {G,C,H}? Y
5. A and E given {G,F}? N
6. A and E given {F,D}? Y
7. A and E given {F,D,H}? N
8. A and E given {B}? Y
9. A and E given {H,B}? Y
10. A and E given {G,C,D,H,D,F,B}? Y




