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Uncertainty material is covered in chapters 13 and 14. 

Chapter 13 gives some basic background on probability from the 
point of view of A.I. 

Chapter 14 talks about Bayesian Networks, exact reasoning in 
Bayes Nets as well as approximate reasoning, which will be main 

topics for us.

Note: Slides in this section draw from Faheim Bacchus, Craig 
Boutillier, Andrew Moore, Sheila McIlraith ...

Reasoning Under Uncertainty
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1.Assignment 3 is due March 17.
2.Drop deadline is March 15.
3.Assignment 4 will cover uncertainty and be posted March 16.
4.Assignment 4 will be due on April 3rd.

Reasoning Under Uncertainty
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Reasoning Under 
Uncertainty

• The world is a very uncertain place.

• As of this point, we’ve basically danced around that
fact.  We’ve assumed that what we see in the world
is really there, what we do in the world has
predictable outcomes, etc.

• i.e., if you are in state S1 and you execute action A you
arrive at state S2.
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Example: Sokoban

S1

S2

S3

move(S1,’N’) = S2

move(S1,’S’) = S3



CSC384  Introduction to Artificial Intelligence

Move(S1,’N’) = S2 50% of the time
Move(S1,’N’) = S3 50% of the time

0.5

0.5

Probabilistic Sokoban is a Very 
Different Game

S1

S2

S3
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Based on what we can see, 
there’s a 30% chance we’re in 
cell S1, 30% in Ss and 40% in 
S3....

Probabilistic Sokoban is a Very 
Different Game

S1

S2

S3
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Life in an Uncertain World
We might not know the effects of an action

• The action might have a random component, like rolling dice.

• We might not know the long term effects of a drug.

• We might not know the status of a road when we choose to drive
down it.

We may not know exactly what state we are in

• E.g., we can’t see our opponents cards in a poker game.

• We don’t know what a patient’s ailment is.

We may still need to act, but we can’t act solely on the basis of facts. We 
have to “gamble”. 
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Uncertainty
But how do we gamble rationally? 

• If we must arrive at the airport at 9pm on a week night we
could “safely” leave for the airport ½ hour before.

Some probability of the trip taking longer, but the probability is
low.

• If we must arrive at the airport at 4:30pm on Friday we most
likely need 1 hour or more to get to the airport.

Relatively high probability of it taking 1.5 hours.

• Acting rationally under uncertainty typically corresponds to
maximizing one’s expected utility.  There are various
reason for doing this.
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Expected Utility

You may not know what state arises from your 
actions due to uncertainty. But if you know (or 
can estimate) the probability you are in each of 
these different states (i.e., if you have a 
probability distribution) you can compute the 
expected utility and take the actions that lead 
to a distribution with highest expected utility. 
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Expected Utility Example

• Probability distribution over outcomes (also
called a “joint distribution”)

• Utilities of outcomes
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Expected Utility Example
• Maximum Expected Utility?

• Here, it’s “Go to Queen Street”

• If the utility of Donuts of Ice Cream had been higher,
however, it might have been “Go to Bloor Street”.
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Maximizing Utility

So, to maximize utilities, we will need:

• Probability Distributions and tools to
reason about probabilities

• Mechanisms to discover utilities or
preferences.  This is an active area of
research.
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Review: Probability Distributions over 
Finite Sets 

A probability is a function defined over a set of 
atomic events U. 

U represents the universe of all possible 
events.
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Review: Probability over Finite Sets

Given U (a universe of events), a probability function is a
function defined over subsets of U that maps each subset
onto the real numbers and that satisfies the Axioms of 
Probability. These are:

1. P(U) = 1

2. P(A) ∈ [0,1]

3. P({}) = 0

4. P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

NB: if A ∩ B = {} then P(A ∪ B) = P(A) + P(B)
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Review: Probability over Finite Sets

P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
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Notation: Properties and Sets

We often write

A∨B: to represent the set of events with either property A or B, i.e. 
the set A∪B

A∧B: to represent the set of events both property A and B, i.e. the 
set A∩B

¬A: to represent the set of events that do not have property A: the
set U-A (i.e., the complement of A w.r.t. the universe of events U)
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As we move forward, ee will model sets of events in our universe as vectors of feature 
values.

Like CSPs, we have 

1. a set of variables V1, V2, …, Vn

2. a finite domain of values for each variable, Dom[V1], Dom[V2], …, Dom[Vn].

The universe of events U is the set of all vectors of values for the variables

〈d1, d2, …, dn〉: di ∈ Dom[Vi]

When we write P(A=a, B=b), we will mean the probability that variable A has been 
assigned value ‘a’ and variable B has been assigned value ‘b’. Note that here, sets of

events are induced by a given value assignment.  So, P(A=a) represents a set of events 
in which A holds the value ‘a’.

Review: Probability over Feature Vectors
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Our event space has size ∏i |Dom[Vi]|, i.e., the 
product of the domain sizes. If |Dom[Vi]| = 2, 
we have 2n distinct atomic events.

Note the size of possible event outcomes (or 
variable assignments) grows exponentially
with the number of variables. 

Review: Probability over Feature Vectors
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We often want to look at subsets of U defined by value 
assignments to particular variables.

E.g.

{V1 = a} is the set of all events where V1 = a

{V1 = a, V3 = d} is the set of all events where V1 
= a and V3 = d.

Note that 

P({V1 = a}) = ∑x∈ Dom[V3]} P({V1 = a, V3 = x}). 

Review: Probability over Feature Vectors
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If we have probability of every atomic event (wherein 
every event is a full instantiation of the variables) we can 
compute the probability of any other set of events. 

E.g.

{V1 = a} is the set of all events where V1 = a

P({V1 = a}) = 

∑x2∈ Dom[V2], ∑x3∈ Dom[V3], ∑x4∈ Dom[V4] … ∑xn∈ Dom[Vn]

P({V1 = a, V2 = x2, V3 = x3, V4 = x4 … , Vn = xn}). 

Review: Probability over Feature Vectors
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Example:

P({V1 = 1}) = ∑x2∈ Dom[V2], ∑x3∈ Dom[V3] P({V1 = 1, V2 = x2, V3 = x3}).

Review: Probability over Feature Vectors
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Example:

P({V1 = 1, V3 = 2}) = ∑x2∈ Dom[V2] P({V1 = 1, V2 = x2, V3 = 2}).

Review: Probability over Feature Vectors

In these examples we are “summing out” some variables, which is also known as “marginalizing” our distribution
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Problem:

There is an exponential number of atomic probabilities to specify.

Requires summing up an exponential number of items.

To evaluate the probability of  sets containing a particular subset of 
variable assignments we can do much better. Improvements come 

from the use of:

1. probabilistic independence, especially conditional
independence.

2. approximation techniques, many of which depend on
distributions structured by independence.

Review: Probability over Feature Vectors
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• Before we get to conditional independence,
we need to define the meaning of conditional
probabilities.

• These capture conditional information, i.e.
information about the influence of any one
variable’s value on the probability of others’.

• Conditional probabilities are essential for
both representing and reasoning with
probabilistic information.

Review: Conditional Probability 



CSC384  Introduction to Artificial Intelligence

• Say that A is a set of events such that
P(A=a) > 0.

• Then one can define a conditional
probability w.r.t. the probability that A=a: 

P(B=b|A=a) = P(B=b,A=a)/P(A=a)

Review: Conditional Probability 
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P(A=a|B=b) refers to the fraction of worlds 
in which B=b that also have A=a.  An 
example:

Review: Conditional Probability 

P(Headache=true) = 1/10

P(Flu=true) = 1/40

P(Headache=true|Flu=true) = 1/2

Headaches are rare and having flu is 
rarer. But, given flu, there is a 50/50 
chance you have a headache.
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P(Headache=true|Flu=true) represents the 
fraction of flu-infected worlds in which you 
have a headache.

Review: Conditional Probability 

= # worlds with flu and headache/#worlds with flu

= area of flu and headache/area of flu

= P(Headache=true,Flu=true)/P(Flu=true)
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A conditional probability is a also probability function, but now 
over a subset of events in the universe instead of over the entire 
universe.  Similar axioms hold:

P(A|A) = 1

P(B|A) ∈ [0,1]

P(C ∪ B|A) = P(C|A) + P(B|A) – P(C ∩ B|A)

Review: Conditional Probability 
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Review: Independence
Probability density is a measure of likelihood. Assume
you pick an element at random from U. Density (i.e. the 
value of P(B) is a measure as to how likely is it to also be in 
set B.

It could be that the density (i.e. likelihood) of B given A is 
identical to its density (or likelihood) in U.

Alternately, the density of B given A could be very 
different that its density (or likelihood) in U.

In the first case we say that B is independent of A.
While in the second case B is dependent on A.
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Review: Independence

A and B are independent properties: 

P(B|A) = P(B) 

A and B are dependent: 

P(B|A) ≠ P(B) 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Review: Conditional Independence

Say that we have picked an element from U.  Then we find 
out that this element has property A (i.e., is a member of 
the set A).

• Does this tell us anything more about how likely it is
that the element also has property B?

• If B is independent of A then we have learned nothing
new about the likelihood of the element being a
member of B.
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Review: Conditional Independence

E.g., say we have a feature vector, we don’t know which
one. We then find out that it contains the feature V1= a. 

• i.e., we know that the vector contains V1= a and is
therefore a member of the set {V1 = a}.

• Does this tell us anything about whether or not V2=a,
V3=c, …, etc.?

• This depends on whether or not these features are
independent/dependent of V1=a.
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If P(V1|V2=b,V3=c) = P(V1|V2=b), we have not gained any 
additional information about V1 from knowing V3=c.

In this case we say that V1 is conditionally independent of 
V3 given V2.

That is, once we know V2, additionally knowing V3 is 
irrelevant (it will give us no more information as to the 
value of V1).

Note we could have P(V1|V3=c) ≠ P(V1). But once we learn 
V2=b, the value of V3 becomes irrelevant.

Review: Conditional Independence
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These pictures represent the probabilities of event sets A, B and C by the areas shaded 
red, blue and yellow respectively with respect to the total area. In both examples A and B 
are conditionally independent given C because:

P(A^B| C) = P(A|C)P(B|C)

BUT A and B are NOT conditionally independent given ¬C, as:

P(A^B|¬C) ≠ P(A|¬C)P(B|¬C)

Review: Conditional Independence
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Note in our class, we generally want to deal with situations where we 
have variables that are conditionally independent (i.e. the variables are 
independent of one another).  This is subtly different than asking if 
different sets of events are independent.  

Variables X and Y are conditionally independent given variable Z if 
and only if ∀ x,y,z. x∈Dom(X) ∧ y∈Dom(Y) ∧ z∈Dom(Z): 

 X=x is conditionally independent of Y=y given Z = z i.e. 

P(X=x∧Y=y|Z=z) = P(X=x|Z=z) * P(Y=y|Z=z)

Can apply to sets of more than two variables.

Review: Variable Independence
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Computational Impact

We will soon see in more detail how independence allows 
us to speed up computations related to inference. But the 
fundamental insight is that  

If A and B are independent properties then 

P(A∧B) = P(B) * P(A) 

Proof: 
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Computational Impact

We will soon see in more detail how independence allows us 
to speed up computations related to inference. But the 
fundamental insight is that  

If A and B are independent properties then 

P(A∧B) = P(B) * P(A) 

Proof: 

P(B|A) = P(B)   (def’n of independence) 
P(A∧B)/P(A) = P(B) 
P(A∧B) = P(B) * P(A)
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• Independence property allows us to “break”
up the computation of a conjunction
“P(A∧B)” into two separate computations
“P(A)” and “P(B)”.

• Dependent on how we express our
probabilistic knowledge this can yield great
computational savings.

Computational Impact
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Similar results hold for conditional independence.  If B and 
C are conditionally independent given A, then

P(B∧C|A) = P(B|A) * P(C|A)

Proof: 

Computational Impact
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Similar results hold for conditional independence.  If B and 
C are conditionally independent given A, then

P(B∧C|A) = P(B|A) * P(C|A)

Proof:  
P(B|C∧A) = P(B|A) (def’n of conditional independence) 
P(B∧C∧A)/P(C∧A) = P(B∧A)/P(A)  
P(B∧C∧A)/P(A) = P(C∧A)/P(A) * P(B∧A)/P(A) 
P(B∧C|A) = P(B|A) * P(C|A) .

Computational Impact
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As with independence, conditional 
independence allows us to break up our 
computation onto distinct parts

 P(B∧C|A) = P(B|A) * P(C|A)

It also allows us to ignore certain pieces of 
information during computations 

P(B|A∧C) = P(B|A)

Computational Impact
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Review: Chain Rule

P(A1∧A2∧…∧An) = 
   P(A1| A2∧…∧An) * P(A2| A3 ∧…∧An) 

* … * P(An-1| An) * P(An) 

Proof:
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Review: Chain Rule

P(A1∧A2∧…∧An) = 
   P(A1| A2∧…∧An) * P(A2| A3 ∧…∧An) 

* … * P(An-1| An) * P(An) 

Proof:

P(A1| A2∧…∧An) * P(A2| A3 ∧…∧An) 
* … * P(An-1| An)

 = P(A1∧A2∧…∧An)/ P(A2∧…∧An) * 
P(A2∧…∧An)/ P(A3∧…∧An) * … * 
P(An-1∧An)/P(An) * P(An)
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Back to Flu World 

What is P(Flu=true|Headache=true)?

P(Headache=true) = 1/10

P(Flu=true) = 1/40

P(Headache=true|Flu=true) = 1/2

Headaches are rare and having flu is 
rarer. But, given flu, there is a 50/50 
chance you have a headache.
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What we just did
We Derived Bayes’ Rule.

P(Y|X) = P(X|Y)P(Y)/P(X) 

P(Y|X) = P(Y⋀X)/P(X) 
= P(Y⋀X)/P(X) * P(Y)/P(Y) 
= P(Y⋀X)/P(Y) * P(Y)/P(X) 
= P(X|Y)P(Y)/P(X)
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What we just did, more 
formally
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Using Bayes Rule to 
gamble

Trivial question: Someone picks an envelope and random and 
asks you to bet as to whether or not it holds a dollar.  What are 

your odds?
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Using Bayes Rule to 
gamble

Not trivial question: Someone lets you take a bead out of the 
envelope before you bet.  If it is black, what are your odds?  If it 

is red, what are your odds? 
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Using Bayes Rule

Note that for Bayes Rule to work requires knowledge of 
several probabilities: 

 P(Heart Disease | High Cholesterol)  
= P(High Cholesterol | Heart Disease) 

* P(Heart Disease)/P(High Cholesterol)

We will return to this later.
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Review: Joint Distributions

As we discussed, the joint 
distribution records the
probabilities that variables will hold 
particular values. 

They can be populated using expert 
knowledge, by using the axioms of 
probability, or by actual data.

The sum of all the probabilities MUST 
be 1 in order to satisfy the axioms of 
probability.

Normalization involves converting
raw counts of data in a table into a 
legal probability distribution (i.e. into 
a distribution that sums to 1).
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Review: Normalizing

To normalize a vector of k numbers or a column in our table, e.g.,
<3, 4, 2.5, 1, 10, 21.5> we must sum them and divide each number by 
the sum:

3 + 4 + 2.5 +1 +10 + 21.5 = 42

Normalized vector: 
= <3/42, 4/42, 2.5/42, 1/42, 10/42, 21.5/42> 
= <0.071, 0.095, 0.060, 0.024, 0.238, 0.512>

After normalizing the vector of numbers sums to 1

It therefore can be used to specify a probability distribution. 
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Note: these probabilities are from the UCI “Adult” Census, which you, too, can fool around with in your 
leisure ....
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