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Probabilistic Reasoning with 
Temporal Models

! This material is covered in Chapter 15 (we cover a
subset of this chapter)

! Thanks to Faheim Bacchus and Peter Abbeel for slides

CSC384: Intro to Artificial Intelligence
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Uncertainty

! In many practical problems we want to reason about a

sequence of observations

! Speech recognition

! Robot localization

! User attention

! Medical monitoring

! Need to introduce time (or space) into our models
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Markov Models

▪ Say we have one variable X (perhaps with a very large number
of possible value assignments).

▪We want to track the probability of different values of X (i.e. the
probability distribution over X) as its values change over time.

▪ Possible solution: Make multiple copies of X, one for each time
point (we assume a discrete model of time): X1, X2, X3 … Xt

▪ A Markov Model is specified by the two following assumptions:

▪The current state Xt is conditionally independent of the earlier
states given the previous state.

P(Xt | Xt-1, Xt-2, …. X1) = P(Xt | Xt-1) 

▪The transitions between Xt-1 and Xt are determined by
probabilities that do not change over time (they are stationary
probabilities).

P(Xt | Xt-1)
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Markov Models
! These assumptions give rise to a Bayesian Network that looks like this:

X2X1 X3 X4

! P(X1,X2,X3,….) = P(X1)P(X2|X1)P(X3|X2) … (Assumption 1)

! All the CPTs (except P(X1)) are the same (Assumption 2)
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Markov Models

X2X1 X3 X4

! D-Separation tells us that Xt-1 is conditionally independent

of Xt+1, Xt+2, … given Xt

! The current state separates the past from the future.
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Example Markov Chain Weather

! States: X = {rain, sun}

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution:

P(X1=sun) = 1.0

CPT P(Xt | Xt-1):

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley]. 
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Example Markov Chain Weather

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

CPT P(Xt | Xt-1):

! P(X1=sun) = 1.0

! What is the probability distribution after one step,
P(X2)?

! Use summing out rule with X1

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley]. 
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Example Markov Chain Weather

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

CPT P(Xt | Xt-1):

! What is the probability distribution on day t (P(Xt))?

! Sum out Xt-1

Forward simulation 
Compute P(X2) then P(X3) then P(X4) …

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley]. 
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Example Run of Forward Computation

▪ From initial observation of sun

▪ From initial observation of rain

▪ From yet another initial distribution Pr(X1):

P(X1) P(X3) P(X∞)P(X4)

P(X1) P(X∞)

…

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.] 

P(X2)

P(X1) P(X3) P(X∞)P(X4)P(X2)

9

Stationary Distributions
! For most Markov chains:

! Influence of the initial distribution dissipates over time.

! The distribution we end up in is independent of the initial distribution

▪ That is the stationary distribution does not change on a forward
progression

▪ We can compute it by solving simultaneous equations (or by forward
simulating the system many times; forward simulation is generally
computationally more effective)

▪ Stationary distribution

▪ The distribution that we end up with is called the stationary
distribution of the chain.

▪ This satisfies:
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Hidden Markov Models

! Markov chains not so useful for most agents
! Need observations to update your beliefs

! Hidden Markov models (HMMs)
! Underlying Markov chain over states X

! But you also observe outputs (effects) at each time step

X2

E1

X1 X3 X4

E2 E3 E4

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley]. 
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Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

! An HMM is defined by:
! Initial distribution: P(X

1
)

! Transitions: P(X
t
|X

t-1
)

! Emissions: P(E
t
|X

t
)

Umbrellat-1 Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley]. 
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Joint Distribution of an HMM

X2

E1

X1 X3

E2 E3▪Assumptions:

▪P(Xt|Xt-1 … X1, Et-1 …. E1) = P(Xt|Xt-1) 

Current state is conditionally independent of early states + evidence given previous 

state 

▪P(Xt|Xt-1) is the same for all time points t

Probabilities are stationary 

▪P(Et|Xt … X1, Et-1 …. E1) = P(Et|Xt) 

Current evidence is conditionally independent of early states + early evidence given 

current state 

Note that two evidence items are not independent, unless one of the 
intermediate states is known.
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Real HMM Examples

! Speech recognition HMMs:
! Observations are acoustic signals (continuous valued)

! States are specific positions in specific words (so, tens of thousands)

! Machine translation HMMs:
! Observations are words (tens of thousands)

! States are translation options

! Robot tracking:
! Observations are range readings (continuous)

! States are positions on a map (continuous)

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.] 
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Tracking/Monitoring

▪Monitoring is the task of tracking P(Xt|et …. e1) over 

time.  i.e. determining state given current and 

previous observations. 

▪P(X1) is the initial distribution over variable (or

feature) X.  Usually start with a uniform distribution

over all values of X.

▪As time elapses and we make observations and

must update our distribution over X, i.e. move from

P(Xt-1|et-1 …. e1) to P(Xt|et …. e1). 

▪This means updating HMM equations.  Tools to do

this existed before Bayes Nets, but we can relate

inference tools to Variable Elimination.
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Example: Robot Localization

t=0 

Sensor model: Can read in which directions there is a wall, never more than 1 mistake 

Motion model: Either executes the move, or the robot with low probability does not 
move at all. Cannot move in wrong direction. 

Initially uniform distribution over where robot is located—equally likely to be anywhere.

▪1▪0▪Prob
Example from 
Michael Pfeiffer

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. ]
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Example: Robot Localization

Initially don’t know where you are. Observe a wall above and  below, 
no wall to the left or right. Low probability of 1 mistake, 2 mistakes 
not possible 

White: impossible to get this reading (more than one mistake) 

Lighter grey: was possible to get the reading, but less likely because it 
required 1 mistake 

▪1▪0▪Prob

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. ]
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Example: Robot Localization

▪1▪0▪Prob

t=2: Move right. Low probability didn’t move, else must have 
moved right.

Still observing wall above and below

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.]

can only be here if 

(a) was at low probability square to the left

(b) was at this square and action didn’t work.
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Example: Robot Localization

t=4

▪1▪0▪Prob

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.] 
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Example: Robot Localization

t=5

▪1▪0▪Prob

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.]
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Xt-1

Et-2

Xt-2 Xt

Et-1 Et

Xt-1

Et-2

Xt-2

Et-1

Relevance

▪Relevance (d-separation) indicates that if

Xt-1is the query variable, the only relevant

variables are ancestors of Xt-1
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We want  

P(Xt-1|et-1,et-2…e1) = P(Xt-1,et-1,et-2…e1)/P(et-1,et-2…e1). 

Use VE with elimination order: X1,X2 … Xt-1

X1: P(X1) P(e1|X1)P(X2|X1) 

X2: P(e2|X2)P(X3|X2) 

… 

Xt-2: P(et-2|Xt-2)P(Xt-1|Xt-2) 

Xt-1: P(et-1|Xt-1)

Xt-1

Et-2

Xt-2

Et-1E2

X2

E1

X1
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Summing out X1 we get a factor of X2; summing 

out X2 we get a factor of X3 and so on: 

X1: P(X1) P(e1|X1)P(X2|X1) 

X2: P(e2|X2)P(X3|X2)F2(X2) 

… 

Xt-2: P(et-2|Xt-2)P(Xt-1|Xt-2)Ft-2(Xt-2) 

Xt-1: P(et-1|Xt-1)Ft-1(Xt-1)
Xt-1

Et-2

Xt-2

Et-1E2

X2

E1

X1
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X1: P(X1) P(e1|X1)P(X2|X1) 

X2: P(e2|X2)P(X3|X2)F2(X2) 

… 

Xt-2: P(et-2|Xt-2)P(Xt-1|Xt-2)Ft-2(Xt-2) 

Xt-1: P(et-1|Xt-1)Ft-1(Xt-1) 

So: 

P(Xt-1|et-1,et-2 … ,e1) = normalize(P(et-1|Xt-1)Ft-1(Xt-1)) 

This is a table with one value for each Xt-1
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Now say time has passed but no observation has 

been made yet. 

X1: P(X1) P(e1|X1)P(X2|X1) 

X2: P(e2|X2)P(X3|X2) 

… 

Xt-2: P(et-2|Xt-2)P(Xt-1|Xt-2) 

Xt-1: P(et-1|Xt-1)P(Xt|Xt-1) 

Xt: 

Same buckets with one new one (Xt) and one new 

factor (P(Xt|Xt-1)).

Xt-1 Xt

Et-1 Et
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Sum out variables, as before:  

X1: P(X1) P(e1|X1)P(X2|X1) 

X2: P(e2|X2)P(X3|X2)F2(X2) 

… 

Xt-2: P(et-2|Xt-2)P(Xt-1|Xt-2)Ft-2(Xt-2) 

Xt-1: P(et-1|Xt-1)P(Xt|Xt-1)Ft-1(Xt-1) 

Xt: Ft(Xt) 

Ft(Xt) = P(et-1|Xt-1)P(Xt|Xt-1)Ft-1(Xt-1)

Xt-1 Xt

Et-1 Et
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We saw P(Xt-1|et-1,et-2 … ,e1) = normalize(P(et-1|Xt-1)Ft-1(Xt-1)) 

Means 

Ft(Xt) = P(et-1|Xt-1)P(Xt|Xt-1)Ft-1(Xt-1) 

or 

Ft(Xt) = c* P(Xt|Xt-1) P(Xt-1|et-1,et-2 … ,e1) 

…. where c is the normalization constant. 

P(Xt|et-1,et-2 … ,e1) = normalize(Ft(Xt)) 

P(Xt|et-1,et-2 … ,e1) =  

normalize( P(Xt|Xt-1) P(Xt-1|et-1,et-2 … ,e1)) 

… we drop c (because we are normalizing)
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How to incorporate the observation et? VE 

looks similar: 

X1: P(X1) P(e1|X1)P(X2|X1) 

X2: P(e2|X2)P(X3|X2)F2(X2) 

… 

Xt-2: P(et-2|Xt-2)P(Xt-1|Xt-2)Ft-2(Xt-2) 

Xt-1: P(et-1|Xt-1)P(Xt|Xt-1)Ft-1(Xt-1) 

Xt: Ft(Xt)P(et|Xt) 

We add P(et|Xt) to the bucket for Xt and normalize.

Xt-1 Xt

Et-1 Et
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So P(Xt|et,et-1,…e1) = Ft(Xt)P(et|Xt) 

We saw that  

P(Xt|et-1,et-2 … ,e1) = normalize(Ft(Xt))=c*Ft(Xt) 

So 

P(Xt|et,et-1,et-2 … ,e1) = normalize(c*Ft(Xt)*P(et|Xt)) 

 = normalize(Ft(Xt)*P(et|Xt)) 

… we again drop c (because we are normalizing) 
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1.Access initial distribution (P(X1))

2.Calculate state estimates over time:

P(Xt|et-1,et-2 … ,e1) =

normalize( P(Xt|Xt-1) P(Xt-1|et-1,et-2 … ,e1)) 

3. Weight with observation:

P(Xt|et,et-1,et-2 … ,e1)=

normalize(P(Xt|et-1,et-2 … ,e1)*P(et|Xt))

HMM Rules, Recap
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Example: Passage of Time

! As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

▪(Transition model: ghosts usually go clockwise)

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. ]
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Example: Observation
! As we get observations, beliefs get re-weighted, uncertainty “decreases”

Before observation After observation

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. ]

P(Xt|et,et-1 … ,e1) =c*(P(Xt|et-1,et-2 … ,e1)*P(et|Xt))
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Dynamic Bayes Nets (DBNs)

! Track multiple variables over time, using multiple sources of evidence

! Idea: repeat a fixed Bayes net structure at each time

! Variables from time t can be conditional on those from t-1

! Dynamic Bayes nets are a generalization of HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3

[Slide created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. ]
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