
Assignment 1, University of Toronto, CSC384 - Intro to AI, Winter 2020 1

Computer Science 384 Monday, January 20, 2020
St. George Campus University of Toronto

Homework Assignment #1: Search
Due: Tuesday, February 4, 2020 by 10:00 PM

Silent Policy: A silent policy will take effect 24 hours before this assignment is due, i.e. no question about
this assignment will be answered, whether it is asked on the discussion board, via email or in person.

Late Policy: 10% per day after the use of 3 grace days.

Total Marks: This assignment represents 11% of the course grade.

Handing in this Assignment
What to hand in on paper: Nothing.

What to hand in electronically: You must submit your assignment electronically. Download solution.py,
sokoban.py, search.py, tips.txt, autograder.py and acknowledgment form.pdf from: http:

//www.teach.cs.utoronto.ca/~csc384h/winter/Assignments/A1/. These are in the zip file that is
called search.zip. Modify solution.py so that it solves the Sokoban problem as specified in this docu-
ment. Then, submit your modified solution.py and tips.txt and your signed acknowledgment form.pdf

using MarkUs. Your login to MarkUs is your teach.cs username and password. You can submit a new ver-
sion of any file at any time, though the lateness penalty applies if you submit after the deadline. For the
purposes of determining the lateness penalty, the submission time is considered to be the time of your latest
submission.

We will test your code electronically. You will be supplied with a testing script that will run a subset of the
tests. If your code fails all of the tests performed by the script (using Python version 3.7), you will receive
a failing grade on the assignment.

When your code is submitted, we will run a more extensive set of tests which will include the tests run in
the provided testing script and a number of other tests. You have to pass all of these more elaborate tests to
obtain full marks on the assignment.

Your code will not be evaluated for partial correctness; it either works or it doesn’t. It is your responsibility
to hand in something that passes at least some of the tests in the provided testing script.

• Make certain that your code runs on teach.cs using python3 (version 3.7) using only standard im-
ports. This version is installed as “python3” on teach.cs. Your code will be tested using this version
and you will receive zero marks if it does not run using this version.

• Do not add any non-standard imports from within the python file you submit (the imports that are
already in the template files must remain). Once again, non-standard imports will cause your code to
fail the testing and you will receive zero marks.

• Do not change the supplied starter code. Your code will be tested using the original starter code, and
if it relies on changes you made to the starter code, you will receive zero marks.

Clarification Page: Important corrections (hopefully few or none) and clarifications to the assignment will
be posted on the Assignment 1 Clarification page: http://www.teach.cs.toronto.edu/~csc384h/

winter/Assignments/A1/a1_faq.html.
You are responsible for monitoring the A1 Clarification page.
Help Sessions: There will be two help sessions for this assignment. Dates and times for these sessions
will be posted to the course website and to Piazza ASAP.
Questions: Questions about the assignment should be asked on Piazza:

http://www.teach.cs.utoronto.ca/~csc384h/winter/Assignments/A1/
http://www.teach.cs.utoronto.ca/~csc384h/winter/Assignments/A1/
http://www.teach.cs.toronto.edu/~csc384h/winter/Assignments/A1/a1_faq.html
http://www.teach.cs.toronto.edu/~csc384h/winter/Assignments/A1/a1_faq.html

Assignment 1, University of Toronto, CSC384 - Intro to AI, Winter 2020 2

Figure 1: A state of the Sokoban puzzle.

https://piazza.com/utoronto.ca/winter2020/csc384/home.

If you have a question of a personal nature, please email one of the A1 TAs, Randy (rhickey at cs.toronto.edu)
or Sam (sam.motamed at mail.utoronto.ca) or a course instructor. Make sure to place [CSC384] and A1 in
the subject line of your message.

1 Introduction
The goal of this assignment will be to implement a working solver for the puzzle game Sokoban shown in
Figure 1. Sokoban is a puzzle game in which a warehouse robot must push boxes into storage spaces. The
rules hold that only one box can be moved at a time, that boxes can only be pushed by a robot and not
pulled, and that neither robots nor boxes can pass through obstacles (walls or other boxes). In addition,
robots cannot push more than one box, i.e., if there are two boxes in a row, the robot cannot push them.
The game is over when all the boxes are in their storage spots.

In our version of Sokoban the rules are slightly more complicated, as there may be more than one
warehouse robot available to push boxes. These robots cannot pass through one another nor can they
move simultaneously, however.

Sokoban can be played online at https://www.sokobanonline.com/play. We recommend that you
familiarize yourself with the rules and objective of the game before proceeding, although it is worth
noting that the version that is presented online is only an example. We will give a formal description of
the puzzle in the next section

2 Description of Sokoban
Sokoban has the following formal description. Read the description carefully. Note that our version differs
from the standard one.

https://piazza.com/utoronto.ca/winter2020/csc384/home
https://www.sokobanonline.com/play

Assignment 1, University of Toronto, CSC384 - Intro to AI, Winter 2020 3

• The puzzle is played on a rectangle board that is a grid board with N squares in the x-dimension and
M squares in the y-dimension.

• Each state contains the x and y coordinates for each robot, the boxes, the storage spots, and the
obstacles.

• From each state, each robot can move North, South, East, or West. No two robots can move simul-
taneously, however. If a robot moves to the location of a box, the box will move one square in the
same direction. Boxes and robots cannot pass through walls or obstacles, however. Robots cannot
push more than one box at a time; if two boxes are in succession the robot will not be able to move
them. Movements that cause a box to move more than one unit of the grid are also illegal. Whether
or not a robot is pushing an object does not change the cost.

• Each movement is of equal cost.

• The goal is achieved when each box is located in a storage area on the grid.

Ideally, we will want our robots to organize everything before the supervisor arrives. This means that with
each problem instance, you will be given a computation time constraint. You must attempt to provide
some legal solution to the problem (i.e. a plan) within this constraint. Better plans will be plans that are
shorter, i.e. that require fewer operators to complete.

Your goal is to implement anytime algorithms for this problem: ones that generates better solutions (i.e.
shorter plans) the more computation time they are given.

3 Code You Have Been Provided
The file search.py, which is available from the website, provides a generic search engine framework and
code to perform several different search routines. This code will serve as a base for your Sokoban solver.
A brief description of the functionality of search.py follows. The code itself is documented and worth
reading.

• An object of class StateSpace represents a node in the state space of a generic search problem. The
base class defines a fixed interface that is used by the SearchEngine class to perform search in that
state space.

For the Sokoban problem, we will define a concrete sub-class that inherits from StateSpace. This
concrete sub-class will inherit some of the “utility” methods that are implemented in the base class.
Each StateSpace object s has the following key attributes:

– s.gval: the g value of that node, i.e., the cost of getting to that state.

– s.parent: the parent StateSpace object of s, i.e., the StateSpace object that has s as a suc-
cessor. This will be None if s is the initial state.

– s.action: a string that contains that name of the action that was applied to s.parent to generate
s. Will be “START” if s is the initial state.

Assignment 1, University of Toronto, CSC384 - Intro to AI, Winter 2020 4

• An object of class SearchEngine se runs the search procedure. A SearchEngine object is initialized
with a search strategy (‘depth first’, ‘breadth first’, ‘best first’, ‘a star’, or ‘custom’) and a cycle
checking level (‘none’, ‘path’, or ‘full’).

Note that SearchEngine depends on two auxiliary classes:

– An object of class sNode sn which represents a node in the search space. Each object sn
contains a StateSpace object and additional details: hval, i.e., the heuristic function value of
that state and gval, i.e. the cost to arrive at that node from the initial state. An f val f n and
weight are tied to search nodes during the execution of a search, where applicable.

– An object of class Open is used to represent the search frontier. The search frontier will be
organized in the way that is appropriate for a given search strategy.

When a SearchEngine’s search strategy is set to ‘custom’, you will have to specify the way that f
values of nodes are calculated; these values will structure the order of the nodes that are expanded
during your search.

Once a SearchEngine object has been instantiated, you can set up a specific search with:

init search(initial state,goal f n,heur f n, f val f n)

and execute that search with

search(timebound,costbound)

The arguments are as follows:

– initial state will be an object of type StateSpace; it is your start state.

– goal f n(s) is a function which returns True if a given state s is a goal state and False other-
wise.

– heuristic f n(s) is a function that returns a heuristic value for state s. This function will only be
used if your search engine has been instantiated to be a heuristic search (e.g. best first).

– f val f n(sNode,weight) defines f values for states. This function will only be used by your
search engine if it has been instantiated to execute a ‘custom’ search. Note that this function
takes in an sNode and that an sNode contains not only a state but additional measures of the
state (e.g. a gval). The function also takes in a float weight. It will use the variables that are
provided to arrive at an f value calculation for the state contained in the sNode.

– timebound is a bound on the amount of time your code will be allowed to execute the search.
Once the run time exceeds the time bound, the search must stop; if no solution has been found,
the search will return False.

– costbound is an optional parameter that is used to set boundaries on the cost of nodes that are
explored. This costbound is defined as a list of three values. costbound[0] is used to prune
states based on their g-values; any state with a g-value higher than costbound[0] will not be
expanded. costbound[1] is used to prune states based on their h-values; any state with an h-
value higher than costbound[1] will not be expanded. Finally, costbound[2] is used to prune
states based on their f -values; any state with an f -value higher than costbound[2] will not be
expanded.

Assignment 1, University of Toronto, CSC384 - Intro to AI, Winter 2020 5

For this assignment we have also provided sokoban.py, which specializes StateSpace for the Sokoban
problem. You will therefore not need to encode representations of Sokoban states or the successor
function for Sokoban! These have been provided to you so that you can focus on implementing good
search heuristics and anytime algorithms.

The file sokoban.py contains:

• An object of class sokobanState, which is a StateSpace with these additional key attributes:

– s.width: the width of the Sokoban board

– s.height: the height of the Sokoban board

– s.robots: positions for each robot that is on the board. Each robot position is a tuple (x,y), that
denotes the robot’s x and y position.

– s.boxes: positions for each box that is on the board. Each box position is also an (x,y) tuple.

– s.storage: positions for each storage bin that is on the board (also (x,y) tuples).

– s.obstacles: positions for obstacles that are on the board. Obstacles, like robots and boxes, are
also tuples of (x,y) coordinates.

• sokobanState also contains the following key functions:

– successors(): This function generates a list of SokobanStates that are successors to a given
SokobanState. Each state will be annotated by the action that was used to arrive at the SokobanState.
These actions are (r,d) tuples wherein r denotes the index of the robot that moved d denotes
the direction of movement of the robot.

– hashable state(): This is a function that calculates a unique index to represents a particular
sokobanState. It is used to facilitate path and cycle checking.

– print state(): This function prints a sokobanState to stdout.

Note that sokobanState depends on one auxiliary class:

– An object of class Direction, which is used to define the directions that each robot can move
and the effect of this movement.

Also note that sokoban.py contains a set of 20 initial states for Sokoban problems, which are stored in the
tuple PROBLEMS. You can use these states to test your implementations.

The file solution.py contains the methods that need to be implemented.

The file autograder.py runs some tests on your code to give you an indication of how well your
methods perform.

4 Assignment Specifics
To complete this assignment you must modify solution.py to:

Assignment 1, University of Toronto, CSC384 - Intro to AI, Winter 2020 6

• Implement a Manhattan distance heuristic (heur manhattan distance(state)). This heuristic will be
used to estimate how many moves a current state is from a goal state. Your implementation should
calculate the sum of Manhattan distances between each box that has yet to be stored and the storage
point nearest to it. Ignore the positions of obstacles in your calculations and assume that many boxes
can be stored at one location.

• Implement Anytime Greedy Best-First Search (anytime gb f s(initial state;heur f n; timebound)).
Details regarding this algorithm are provided in Section 5.

• Implement Anytime Weighted A* (weighted astar(initail state, timebound)). Details about this al-
gorithm are provided in Section 6. Note that your implementation will require you to instantiate
a SearchEngine object with a custom search strategy. To do this you must therefore define an
f-value function (f val f unction(sNode,weight)) and remember to provide this when you execute
init search.

• Implement a non-trivial heuristic for Sokoban that improves on the Manhattan distance heuristic
(heur alternate(state)).

• You should give three tips (2 sentences each) as if you were advising someone who was attempting
this problem for this first time on what to do. Write these tips in the file tips.txt.

Note that when we are testing your code, we will limit each run of your algorithm on teach.cs to a fixed
time bound. Instances that are not solved within this limit will provide an interesting evaluation metric:
failure rate.

5 Anytime Greedy Best-First Search
Greedy best-first search expands nodes with lowest h(node) first. The solution found by this algorithm
may not be optimal. Anytime greedy best-first search (which is called anytime gb f s in the code) continues
searching after a solution is found in order to improve solution quality. Since we have found a path to the
goal after the first iteration, we can introduce a cost bound for pruning: if node has g(node) greater than the
best path to the goal found so far, we can prune it. The algorithm returns either when we have expanded all
non-pruned nodes, in which case the best solution found by the algorithm is the optimal solution, or when
it runs out of time. We prune based on the g value of the node only because greedy best-first search is not
necessarily run with an admissible heuristic.

Record the time when anytime gb f s is called with os.times()[0]. Each time you call search, you should
update the time bound with the remaining allowed time. The automarking script will confirm that your
algorithm obeys the specified time bound.

6 Anytime Weighted A*

Instead of A*’s regular node-valuation formula (f = g(node)+h(node)), Weighted A* introduces a
weighted formula:

f = g(node)+w∗h(node)

Assignment 1, University of Toronto, CSC384 - Intro to AI, Winter 2020 7

where g(node) is the cost of the path to node, h(node) is the estimated cost of getting from node to the
goal, and w > 1 is a bias towards states that are closer to the goal. Theoretically, the smaller w is, the
better the solution will be (i.e. the closer to the optimal solution it will be ... why and under what
assumptions??). However, different values of w will require different computation times.

Weighted A* typically starts with a value for w that is more than 1. Since the first solution that is found by
Weighted A* may not be optimal if w > 1, we can keep searching after we have found a solution.
Anytime Weighted A* continues to search, decreasing w at each iteration, until either there are no nodes
left to expand (and our best solution is the optimal one) or it runs out of time. Since a solution we find in
one iteration may not be optimal, we can introduce a cost bound for pruning during subsequent iterations:
if node has a g(node)+h(node) value that is greater than the cost of the best path to the goal found so far,
we can prune it.

When you are passing in an f val function to init search for this problem, you will need to have specified
the weight for the f val f unction. You can do this by wrapping the f val f unction(sN,weight) you have
written in an anonymous function, i.e.,

wrapped f val f unction = (lambda sN : f val f unction(sN,weight))

Assignment 1, University of Toronto, CSC384 - Intro to AI, Winter 2020 8

Figure 2: A state of the Water Jugs puzzle.

7 StateSpace Example: WaterJugs.py
WaterJugs.py contains an example implementation of the search engine for the Water Jugs problem
shown in Figure 2.

• You have two containers that can be used to store water. One has a three-gallon capacity, and the
other has a four-gallon capacity. Each has an initial, known, amount of water in it.

• You have the following actions available:

– You can fill either container from the tap until it is full.

– You can dump the water from either container.

– You can pour the water from one container into the other, until either the source container is
empty or the destination container is full.

• You are given a goal amount of water to have in each container. You are trying to achieve that goal
in the minimum number of actions, assuming the actions have uniform cost.

WaterJugs.py has an implementation of the Water Jugs puzzle that is suitable for using with search.py.
Note that in addition to implementing the three key methods of StateSpace, the author has created a set
of tests that show how to operate the search engine. You should study these to see how the search engine
works.

GOOD LUCK!

	Introduction
	Description of Sokoban
	Code You Have Been Provided
	Assignment Specifics
	Anytime Greedy Best-First Search
	Anytime Weighted A*
	StateSpace Example: WaterJugs.py

