
Synchronization Primitives



Synchronization Mechanisms

• Locks

• Very primitive constructs with minimal semantics

• Semaphores

• A generalization of locks

• Easy to understand, hard to program with

• Condition Variables

• Constructs used in implementing monitors (more on 
this later…)



Locks
• Synchronization mechanisms with 2 operations: 

acquire(), and release()

• In simplest terms: an object associated with a particular 
critical section that you need to “own” if you wish to 
execute in that region

• Simple semantics to provide mutual exclusion:

acquire(lock);

//CRITICAL SECTION

release(lock);

• Downsides:
• Can cause deadlock if not careful
• Cannot allow multiple concurrent accesses to a resourc



POSIX Locks
• POSIX locks are called mutexes (since locks provide 

mutual exclusion…)

• A few calls associated with POSIX mutexes:
pthread_mutex_init (mutex, attr)
• Initialize a mutex

pthread_mutex_destroy (mutex)
• Destroy a mutex

pthread_mutex_lock (mutex)
• Acquire the lock

pthread_mutex_trylock(mutex)
• Try to acquire the lock (more on this later…)

pthread_mutex_unlock (mutex)
• Release the lock



Initializing & Destroying
POSIX Mutexes

• POSIX mutexes can be created statically or dynamically
• Statically, using PTHREAD_MUTEX_INITIALIZER

pthread_mutex_t mx = PTHREAD_MUTEX_INITIALIZER;

• Will initialize the mutex will default attributes

• Only use for static mutexes; no error checking is performed

• Dynamically, using the pthread_mutex_init call

int pthread_mutex_init(pthread_mutex_t * mutex, const
pthread_mutexattr_t * attr);

• mutex: the mutex to be initialized

• attr: structure whose contents are used at mutex creation to determine 
the mutex’s attributes

• Same idea as pthread_attr_t attributes for threads

• Destroy using pthread_mutex_destroy
int pthread_mutex_destroy(pthread_mutex_t *mutex);

• mutex: the mutex to be destroyed

• Make sure it’s unlocked! (destroying a locked mutex leads to undefined 
behaviour…)



Acquiring and Releasing
POSIX Locks

• Acquire
int pthread_mutex_lock(pthread_mutex_t *mutex);
• mutex: the mutex to lock (acquire)
• If mutex is already locked by another thread, the call 

will block until the mutex is unlocked
int pthread_mutex_trylock(pthread_mutex_t *mutex);
• mutex: the mutex to TRY to lock (acquire)
• If mutex is already locked by another thread, the call 

will return a “busy” error code (EBUSY)

• Release
int pthread_mutex_unlock(pthread_mutex_t *mutex);
• mutex: the mutex to unlock (release)



Banking Example

• Bank account balance maintained in one 
variable int balance

• Transactions: deposit or withdraw some 
amount from the account (+/- balance)

• Unprotected, concurrented accesses to your 
balance could create race conditions



Banking Example

• Thread 1 withdraws 100

int new_balance = balance –
amount;

balance = new_balance;

• Thread 2 withdraws 100

int new_balance = balance –
amount;

balance = new_balance;

• End with balance – 100 instead of balance – 200
• Bank error in your favour? Cold be the other way around!
• Idea: put a lock around the code that modifies balance so only 

a single thread accesses it at any given time



Banking Example
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS200
int balance=0;
pthread_mutex_t bal_mutex;

int main (int argc, char *argv[]){
pthread_t thread[NUM_THREADS];
int rc;
long t;
void *status;

pthread_mutex_init(&bal_mutex, NULL);
for(t=0; t<NUM_THREADS; t+=2) {

rc = pthread_create(&thread[t], NULL, deposit, (void *)10); 
if (rc) {

printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);

}
rc = pthread_create(&thread[t+1], NULL, widthdraw, (void *)10); 
if (rc) {

printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);

}
}

(…)



Banking Example
(…)   

for(t=0; t<NUM_THREADS; t++) {

rc = pthread_join(thread[t], &status);

if (rc) {

printf("ERROR; return code from pthread_join() is %d\n", rc);

exit(-1);

}

}

printf("Final Balance is %d.\n", balance);

pthread_exit(NULL);

}



Banking Example - Transactions
void *deposit(void *amt){

pthread_mutex_lock(&bal_mutex);

//CRITICAL SECTION
int amount = (int)amt;
int new_balance = balance + 

amount;
balance = new_balance;

pthread_mutex_unlock(&bal_mutex)
;

pthread_exit((void *)0);
}

void *withdraw(void *amt){

pthread_mutex_lock(&bal_mutex);

//CRITICAL SECTION
int amount = (int)amt;
int new_balance = balance -

amount;
balance = new_balance;

pthread_mutex_unlock(&bal_mutex)
;

pthread_exit((void *)0);
}



Semaphore
• Synchronization mechanism that generalizes locks to more 

than just “acquired” and “free” (or “released”)

• A semaphore provides you with:
• An integer count accessed through 2 atomic operations
• Wait - aka: down, decrement, P (for proberen)

• Block until semaphore is free, then decrement the variable
• Signal - aka: up, post, increment, V (for verhogen)

• Increment the variable and unblock a waiting thread (if there 
are any)

• A mutex was just a binary semaphore (remember 
pthread_mutex_lock blocked if another thread was holding 
the lock)

• A queue of waiting threads



POSIX Semaphores
• Declared in semaphore.h

• A few calls associated with POSIX semaphores:
sem_init
• Initialize the semaphore

sem_wait
• Wait on the semaphore (decrement value)

sem_post
• Signal (post) on the semaphore (increment value)

sem_getvalue
• Get the current value of the semaphore

sem_destroy
• Destroy the semaphore



Initializing & Destroying
POSIX Semaphores

• Initialize semaphores using sem_init
int sem_init(sem_t *sem, int pshared, unsigned int
value);
• sem: the semaphore to initialize
• pshared: non-zero to share between processes
• value: initial count value of the semaphore

• Destroy semaphores using sem_destroy
int sem_destroy(sem_t *sem);
• sem: semaphore to destroy

• Semaphore must have been created using sem_init
• Destroying a semaphore that has threads blocked on it 

is undefined.



Decrementing & Incrementing
POSIX Semaphores

• Decrement semaphores using sem_wait
int sem_wait(sem_t *sem);

• sem: the semaphore to decrement (wait on)

• Increment semaphores using sem_post
int sem_post(sem_t *sem);

• sem: semaphore to increment

• Let’s look at an example of a very simple server 
simulation…



Server Example
(...)
#define NUM_THREADS200
#define NUM_RESOURCES10sem_t resource_sem; //Sempahore declaration

int main (int argc, char *argv[])
{ pthread_t thread[NUM_THREADS];

int rc;
int i;
void *status;

sem_init(&resource_sem, 0, NUM_RESOURCES); //Resource Semaphore

for(i=0; i<NUM_THREADS; i++) {

rc = pthread_create(&thread[i], NULL, handle_connection, (void *)i); 
if (rc) {

printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);
}

}
(…)

for(i=0; i<NUM_THREADS; i++) {
rc = pthread_join(thread[i], &status);
if (rc) {

printf("ERROR; return code from pthread_join() is %d\n", rc);
exit(-1);

}
}

return 0;
} //End of main



Server Example – Connection Handler

void *handle_connection(void *client){
printf ("Handler for client %d created!\n", (int)client);

sem_wait(&resource_sem);

//DO WORK TO HANDLE CONNECTION HERE
sleep(1);
printf ("Done servicing client %d\n", (int) client);

sem_post(&resource_sem);

pthread_exit((void *)0);
}



Condition Variables
• Another useful synchronization construct used in implementing 

monitors - only a single process execute inside the monitor

• Locks control thread access to data; condition variables allow 
threads to synchronize based on the value of the data.

• Alternative to condition variables is to constantly poll the variable 
(from the critical section)
• BAD!

• Ties up a lot of CPU resources

• Could potentially lead to synchronization problems

• Monitors support suspending execution within the monitor
• wait() (suspend the invoking process and release the lock)

• signal() (resume exactly one suspended process)

• broadcast() (resumes all suspended processes)

• If no process is suspended, signal/broadcast has no effect (in contrast to 
semaphores, where signal always changes state of the semaphore)



POSIX Condition Variables
• POSIX condition variables: pthred_cond_t

• A few calls associated with POSIX CVs:
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t
*attr);

• Initialize a condition variable
int pthread_cond_destroy(pthread_cond_t *cond);

• Destroy a condition variable
int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t
*mutex);

• Wait on a condition variable
int pthread_cond_signal(pthread_cond_t *cond);

• Wake up one thread waiting on this condition variable
int pthread_cond_broadcast(pthread_cond_t *cond);

• Wake up all threads waiting on this condition variable



Main Thread
- Declare and initialize global data/variables which require synchronization (such as "count")
- Declare and initialize a condition variable object
- Declare and initialize an associated mutex
-Create threads A and B to do work

Thread A
- Do work up to the point where a certain 
condition must occur (such as "count" must 
reach a specified value)
- Lock associated mutex and check value of a 
global variable
- Call pthread_cond_wait() to perform a blocking 
wait for signal from Thread-B. Note that a call 
to pthread_cond_wait()automatically and 
atomically unlocks the associated mutex variable 
so that it can be used by Thread-B.
- When signalled, wake up. Mutex is 
automatically and atomically locked.
- Explicitly unlock mutex
- Continue

Thread B
- Do work
- Lock associated mutex
- Change the value of the global variable that 
Thread-A is waiting upon.
- Check value of the global Thread-A wait variable. If 
it fulfills the desired condition, signal Thread-A.
- Unlock mutex.
- Continue

Main Thread: Join / Continue

Using Condition Variables (from LLNL tutorial)



Monitors
• Locks
• Provide mutual exclusion
• 2 operations: acquire() and release()

• Semaphores
• Generalize locks with an integer count variable and a thread 

queue
• 2 operations: wait() and signal()
• If the integer count is negative, threads wait in a queue until 

another thread signals the semaphore

• Monitors
• An abstraction that encapsulates shared data and operations 

on it in such a way that only a single process at a time may 
be executing “in” the monitor



More on Monitors

• Programmer defines the scope of the monitor
• ie: which data is “monitored”

• Local data can be accessed only by the monitor’s 
procedures (not by any external procedures)

• Before any monitor procedure may be invoked, 
mutual exclusion must be guaranteed
• There is often a lock associated with each monitored 

object

• Other processes that attempt to enter the 
monitor are blocked. They must first acquire the 
lock before becoming active in the monitor



Complications With Monitors
• Complication
• A process may need to wait for something to happen
• Input from another thread might be necessary for 

example
• The other thread may require access to the monitor to 

produce that event

• Solution?
• Monitors support suspending execution within the monitor
• wait() (suspend the invoking process and release the lock)
• signal() (resume exactly one suspended process)
• broadcast() (resumes allsuspended processes)
• If no process is suspended, signal/broadcast has no 

effect (in contrast to semaphores, where signal always 
changes state of the semaphore)



Monitor signal() ; who goes first?
• Suppose P executes a signal operation that would wake up a 

suspended process Q
• Either process can continue execution, but both cannot 

simultaneously be active in the monitor

• Who goes first?
• Hoare monitors: waiter first

• signal() immediately switches from the caller to a waiting 
thread

• Condition that the waiter was blocked on is guaranteed to hold 
when the waiter resumes

• Mesa monitors: signaler first
• signal() places a waiter on the ready queue, but signaler 

continues inside the monitor
• Condition that the waiter was blocked on is not guaranteed to 

hold when the waiter resumes (must check again...)



Hoare vs. Mesa Monitors
• Hoare monitor wait

if(...){

wait(cv, lock);

}

• Mesa monitor wait

while(...){

wait(cv, lock);

}

• Tradeoffs
• Hoare monitors are easier to reason with, but hard to implement
• Mesa monitors are easier to implement, and support additional 

operations like broadcast()



Monitor Example - Bounded Buffers
• We have a buffer of limited size N

• Producers add to the buffer if it is not full

• Consumers remove from the buffer if it is not empty

• Want to control buffer as a monitor
• Buffer can only be accessed by methods that are “part of” the monitor, 

that only give one producer or consumer access to the buffer at a time

• Need 2 functions
• add_to_buffer()

• remove_from_buffer()

• Need
• One lock

• Two conditions

• One for producers to wait

• One for consumers to wait



Monitor Example - Bounded Buffers
#define N 100

typedef struct buf_s {

int data[N];

int inpos; /* producer inserts here */

int outpos; /* consumer removes from here */

int numelements; /* # items in buffer */

struct lock *mylock; /* access to monitor */

struct cv *notFull; /* for producers to wait */

struct cv *notEmpty; /* for consumers to wait */

} buf_t;

buf_t buffer;

void add_to_buff(int value);

int remove_from_buff();



Monitor Example - Bounded Buffers
void add_to_buf(int value) {

lock_acquire(buffer.mylock);

while (nelements == N) {

/* buffer is full, wait */

cv_wait(buffer.notFull, buffer.mylock);

}

buf.data[inpos] = value;

inpos = (inpos + 1) % N;

nelements++;

cv_signal(buffer.notEmpty, buffer.mylock);

lock_release(buffer.mylock);

}

What kind of 
monitor is this?



Monitor Example - Bounded Buffers
int remove_from_buf() {

int val;

lock_acquire(buffer.mylock);

while (nelements == 0) {

/* buffer is empty, wait */

cv_wait(buffer.notEmpty, buffer.mylock);

}

val = buf.data[outpos];

outpos = (outpos + 1) % N;

nelements--;

cv_signal(buffer.notFull, buffer.mylock);

lock_release(buffer.mylock);

}


