
Operating Systems

Operating Systems

Professor Sina Meraji

U of T

How are file systems implemented?

File system implementation

 Files and directories live on secondary storage

 Anything outside of “primary memory”

 Anything that does not permit direct instruction

execution or data fetch via machine load/store

instructions

 Is persistent: data survives loss of power

 We are focusing on the use of fixed hard

magnetic disks for implementing secondary

storage

Disk Components

Read/Write Head

Upper Surface

Platter

Lower Surface

Cylinder

Track

Sector

Arm

Actuator

Seek

Rotation

Disk service time components

After BLUE read Seek for RED Rotational latency After RED read

 Sequential access is a lot faster than random access

Mixing workloads can be tricky

 Example scenario: Suppose there are two processes

 Each run in isolation (by itself) gets 20 MB/s disk
throughput

 If you run the two processes simultaneously each
gets 2 MB/s

 What happened?

Components of disk access time

 Disk request performance depends on three steps
 Seek – moving the disk arm to the correct cylinder

 Depends on how fast disk arm can move (increasing
very slowly)

 Rotation – waiting for the sector to rotate under the head

 Depends on rotation rate of disk (increasing, but slowly)

 Transfer – transferring data from surface into disk controller
electronics, sending it back to the host

 Depends on density (increasing quickly)

 How long does this typically take?

 Seek times:
 1-15ms, depending on distance

 average 5-6ms

 improving at 7-10% per year

 Rotation speeds:
 ~7200 RPMs for cheap SATA disks

 10,000-15,000 RPMs for high-end SCSI disks

 average latency of 3ms

 improving at 7-10% per year

 This is slow!!!

 Sequential access much faster than random!

Disks are slow

OS design principles

 Since disk I/O is slow:

 Minimize number of disk accesses

 E.g. by caching

 When using the disk try to minimize access cost

 Particularly seeks and rotation

 Use smart disk request scheduling

 Arrange data for sequential access over random access

Disks are messy

 Disks are messy physical devices:

 Errors, bad blocks, missed seeks, etc.

 The job of the OS is to hide this mess from higher

level software

 Low-level device control (initiate a disk read, etc.)

 Higher-level abstractions (files, databases, etc.)

OS  disk interaction

 Specifying disk requests requires a lot of info:

 Cylinder #, surface #, track #, sector #, transfer size…

 Modern disks are even more complicated

 Not all tracks have the same number of sectors, sectors

are remapped, etc.

 Older disks required the OS to specify all of this

 The OS needed to know all disk parameters

 Fortunately modern drives provide

a more high-level interface:

logical block addressing

Logical block addresssing

OS’s view of storage device

10 2 8 19 …

Storage exposed as linear array of blocks
Common block size: 512 bytes

 The disk exports its data as logical array of blocks [0…N]

 Disk maps logical blocks to cylinder/surface/track/sector

 Only need to specify the logical block # to read/write

 But now the disk parameters are hidden from the OS

Disk Scheduling

 Because seeks are so expensive, the OS tries to schedule
disk requests that are queued waiting for the disk
 FCFS (do nothing)

 Reasonable when load is low

 Long waiting times for long request queues

 SSTF (shortest seek time first)

 Minimize arm movement (seek time), maximize request rate

 Favors middle blocks

 SCAN (elevator)

 Service requests in one direction until done, then reverse

 C-SCAN

 Like SCAN, but only go in one direction (typewriter)

 LOOK / C-LOOK

 Like SCAN/C-SCAN but only go as far as last request in each

direction (not full width of the disk)

Disk Scheduling (2)

 In general, unless there are request queues, disk

scheduling does not have much impact

 Important for servers, less so for PCs

 Modern disks often do the disk scheduling themselves

 Disks know their layout better than OS, can optimize better

 Ignores, undoes any scheduling done by OS

 How does the OS implement the abstraction

of files and directories on top of this logical

array of disk blocks?

Back to files and directories …

Disk Layout Strategies

 Files span multiple disk blocks

 How do you find all of the blocks for a file?
1. Contiguous allocation

 Like memory

 Fast, simplifies directory access

 Inflexible, causes fragmentation, needs compaction

2. Linked, or chained, structure

 Each block points to the next, directory points to the first

 Good for sequential access, bad for all others

3. Indexed structure (indirection, hierarchy)

 An “index block” contains pointers to many other blocks

 Handles random better, still good for sequential

 May need multiple index blocks (linked together)

Indexed Allocation: Unix Inodes

 Unix inodes implement an indexed structure for files

 Each inode contains 15 block pointers

 First 12 are direct block pointers (e.g., 4 KB data blocks)

 Then single, double, and triple indirect

…

0

12
13
14

1

… …

…

…

Unix Inodes and Path Search

 Example: We need to find the first data block for the
file /one.txt

 Remember:
 Unix Inodes are not directories

 They describe where on the disk the blocks for a file are
placed

 Directories are files, so inodes also describe where the blocks for
directories are placed on the disk

Unix Inodes and Path Search

 Directory entries map file names to inodes
 To open “/one.txt”, use Master Block to find inode for “/” on

disk and read inode into memory

 inode allows us to find data block for directory “/”

 Read “/”, look for entry for “one.txt”

 This entry gives locates the inode for “one.txt”

 Read the inode for “one” into memory

 The inode says where first data block is on disk

 Read that block into memory to access the data in the file

File System Implementation

 A “Master Block” determines location of root directory
(aka partition control block, superblock)

 A free map determines which blocks are free, allocated

 Remaining disk blocks used to store files (and dirs)
 There are many ways to do this

Bitmap Space to store files and directories

Default usage of LBN space
Superblock

Original Unix File System

 Simple, straightforward implementation

 Easy to implement and understand

 Problems:

 Poor utilization of disk bandwidth (lots of seeking). Why???

Bitmap Inodes Data Blocks

Default usage of LBN space

• Recall FS sees storage as linear array of blocks

• Each block has a logical block number (LBN)

Superblock

Data and Inode Placement

Original Unix FS had two placement problems:

1. Data blocks allocated randomly in aging file systems
 Blocks for the same file allocated sequentially when FS is new

 As FS “ages” and fills, need to allocate into blocks freed up
when other files are deleted

 Problem: Deleted files essentially randomly placed

 So, blocks for new files become scattered across the disk

2. Inodes allocated far from blocks
 All inodes at beginning of disk, far from data

 Traversing file name paths, manipulating files, directories
requires going back and forth from inodes to data blocks

Both of these problems generate many long seeks

FFS

 BSD Unix folks did a redesign (early-mid 80s) that they

called the Fast File System (FFS)

 Improved disk utilization, decreased response time

 Now the FS from which all other Unix FS’s have been

compared

 Good example of being device-aware for performance

Cylinder Groups

 BSD FFS addressed placement problems using the
notion of a cylinder group (aka allocation groups in
lots of modern FS’s)
 Disk partitioned into groups of cylinders

 Data blocks in same file allocated in same cylinder group

 Files in same directory allocated in same cylinder group

 Inodes for files allocated in same cylinder group as file data
blocks

Superblock

Cylinder group organization

Cylinder Group

Cylinder Groups (continued)

 Allocation in cylinder groups provides closeness

 Reduces number of long seeks

 Free space requirement

 To be able to allocate according to cylinder groups, the disk

must have free space scattered across cylinders

 10% of the disk is reserved just for this purpose

 If preferred cylinder group is full, allocate from a “nearby”

group

Space Allocation in Cylinder

Groups

 If possible do allocation in groups of 8 blocks (bytes in bitmap)
 Find first byte that’s all zero

 Backtrack the bits before to check for zero

Allocation Bitmap

Space Allocation in Cylinder

Groups

 If possible do allocation in groups of 8 blocks (bytes in bitmap)
 Find first byte that’s all zero

 Backtrack the bits before to check for zero

Allocation Bitmap

More FFS solutions

 Small blocks (1K) in orig. Unix FS caused 2 problems:

 Low bandwidth utilization

 Small max file size (function of block size)

 Fix using a larger block (4K)

 New Problem: internal fragmentation

Disk layout of the Linux ext2 file system.

The Linux Second Extended File

System (EXT2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

(a) A Linux directory with three files. (b) The same directory after

the file voluminous has been removed.

The Linux Second Extended File

System (EXT2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The relation between the file descriptor table, the open file

description table, and the i-node table.

The Linux Second Extended File

System (EXT2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

FFS: Consistency Issues

 Inodes: fixed size structure stored in cylinder groups

 Metadata updates are synchronous operations:
 Write newly allocated inode to disk before its name is entered in

a directory.

 Remove a directory name before the inode is deallocated

 Write a deallocated inode to disk before its blocks are placed into
the cylinder group free list.

 Some updates create cyclical dependences

Superblock Cylinder GroupInodes

FFS Observation 1

 If the server crashes in between any of these

synchronous operations, then the file system

is in an inconsistent state.

 Solutions:

 fsck – post-crash recovery process to scan file

system structure and restore consistency

 Log updates to enable roll-back or roll-forward.

FFS Observation 2

 The performance of FFS is optimized for disk block

clustering, using properties of the disk to inform file

system layout

 Observation: Memory is now large enough that most of

the reads that go to the disk are the first read of a file.

Subsequent reads are satisfied in memory by file buffer

cache.

 I.e., there is no performance problem with reads. But

write calls could be made faster.

 Writes are not well-clustered, they include inodes and

data blocks.

Log Structured File System

(LSF)
 Ousterhout 1989

 Write all file system data in a continuous log.

 Uses inodes and directories from FFS

 Needs an inode map to find the inodes
 An inode number is no longer a simple index.

 Cleaner reclaims space from overwritten or deleted
blocks.

superblock

summary

inodes

data blocks

LFS Reads

 If the writes are easy, what happens to the reads?

 To read a file from disk:

1. Read the superblock to find the index file

2. Read the index file (linear search on block of inodes)

3. Use the disk address in inode to read the block of index file

containing the inode-map

4. Get the file’s inode

5. Use the inode as usual to find the file’s data blocks

• But remember, we expect reads to hit in memory most

of the time.

NTFS (Windows)

 The New Technology File System (NTFS) from
Microsoft replaced the old FAT file system.

 The designers had the following goals:
1. Eliminate fixed-size short names

2. Implement a more thorough permissions scheme

3. Provide good performance

4. Support large files

5. Provide extra functionality:

 Compression

 Encryption

 Types

 In other words, they wanted a file system flexible
enough to support future needs.

NTFS

 Each volume (partition) is a linear sequence of blocks
(usually 4 Kb block size).

 Each volume has a Master File Table (MFT).
 Sequence of 1 KB records.

 One or more record per file or directory

 Similar to inodes, but more flexible

 Each MFT record is a sequence of variable length (attribute,
value) pairs.

 Long attributes can be stored externally, and a pointer kept in the
MFT record.

 NTFS tries to allocate files in runs of consecutive blocks.

MFT Record

 An MFT record for a 3-run 9-block file.

 Each “data” attribute indicates the starting block and

the number of blocks in a “run” (or extent)

 If all the records don’t fit into one MFT record,

extension records can be used to hold more.

0 9 20 4 64 2 80 3
File

Name

Standard

Info

Standard

info header

Record

header

File name

header

Data

header
Header Run 1 Run 2 Run 3

Disk blocks

Block numbers 20-23 64-65 80-82

MFT Record for a Small

Directory

 Directory entries are stored as a simple list

 Large directories use B+ trees instead.

Standard

Info

Standard

info header

Record

header

File name

header

A directory entry contains the MFT index for the file

the length of the file name, the file name itself,

and various fields and flags.

Better I/O performance

through parallelism

 Idea: Spread the work across several disks

 RAID: Redundant Arrays of Inexpensive Disks

 While we’re at it, why not also increase reliability ….

Better I/O performance

through parallelism

 Idea: Spread the work across several disks

 RAID: Redundant Arrays of Inexpensive Disks

 While we’re at it, why not also increase reliability ….

Better I/O performance

through parallelism

 Idea: Spread the work across several disks

 RAID: Redundant Arrays of Inexpensive Disks

 While we’re at it, why not also increase reliability ….

