
Operating Systems

Operating Systems

Sina Meraji

U of T



New topic:

 File systems!



What do file systems do?

 They provide a nice abstraction of storage:

Hard Disks

Read block

Write block

Reality

/

usr1

demke schroeder peterson

papersgrants

Abstraction



File Systems

 File management systems

 Implement an abstraction (files) for secondary 

storage

 Organize files logically (directories)

 Permit sharing of data between processes, 

people, and machines

 Protect data from unwanted access (security)



File Concept

 A file is named collection of data with some 
attributes
 Name

 Owner

 Location

 Size

 Protection

 Creation time

 Time of last access



File Types

 A file’s type can be encoded in its name or contents

 Windows encodes type in name

 .exe, .doc, .jpg, etc.

 Unix encodes type in contents (sometimes)

 Magic numbers, initial characters (e.g., #! for shell scripts)



Conceptual File Operation

 Create

 Write

 Read

 Repositioning 
within file

 Delete

 Truncating a file

 Open

 Close

Unix (C library)

 creat(name)

 write(fd, buf, len)

 read(fd, buf, len)

 seek(fd, pos)

 unlink(name)

 truncate(fd, length)

 open(name, mode)

 close(fd)

Where in the file do 

write and read 

operations operate?



File Access Methods

 General-purpose file systems support simple 

methods

 Sequential access – read bytes one at a time, in order

 read next

 write next

 Direct access – random access given block/byte number

 read n (byte at offset n)

 write n

 What does Unix use?

 both
Unix (C library)

 read(fd, buf, len)

 write(fd, buf, len)

 seek(fd, pos)



File Access Methods

 Database systems support more sophisticated methods

 Record access

 Indexed access

John 75837 A

David 63548 C+

Alice 92746 A

Index

Get record where

name equals “Jim”

 Modern OS file systems support only simple methods 

(direct access, sequential access)



Conceptual File Operation

 Create

 Write

 Read

 Repositioning 
within file

 Delete

 Truncating a file

 Open

 Close

Unix (C library)

 creat(name)

 write(fd, buf, len)

 read(fd, buf, len)

 seek(fd, pos)

 unlink(name)

 truncate(fd, length)

 open(name, mode)

 close(fd)

Why do we need 

open and close 

operations?



Handling operations on files

 Involves searching the directory for the 

entry associated with the named file
 when the file is first used actively, store its attribute info 

in a system-wide open-file table; the index into this table 

is used on subsequent operations  no searching

Open File Table

…

…

sample.txt

… 

…

Unix example (open, read, write are syscalls):

main() {

char onebyte;

int fd = open(“sample.txt”, “r”);

read(fd, &onebyte, 1);

write(STDOUT, &onebyte, 1);

close(fd);

}



Shared open files

 There are actually 2 levels of internal tables
 a per-process table of all files that each process has open 

(this holds the current file position for the process)

 each entry in the per-process table points to an entry in the 
system-wide open-file table (for process independent info)

System-Wide 

Open File Table

…

somefile.txt

anotherfile.txt

sample.txt

…

Open File 

Table

posn, …,     

posn, … ,    

posn, … ,     

posn, … ,    

posn, … ,    

Open File 

Table

posn, …,     

posn, … ,    

posn, … ,     

posn, … ,    

posn, … ,    



Directories
 Directories serve multiple purposes

 For users, they provide a structured way to organize files

 For the file system, they provide a convenient naming 
interface that allows the implementation to separate logical 
file organization from physical file placement on the disk

 Also store information about files (owner, permission, etc.)

/

usr1

demke schroederpeterson

papersgrants papers



Directories
 Most file systems support multi-level directories

 Naming hierarchies (/, /usr, /usr/local/, …)

/

usr1

demke schroederpeterson

papersgrants papers



What is a directory at the OS level?

 A directory is a list of entries – names and associated 

metadata

 Metadata is not the data itself, but information that describes 

properties of the data (size, protection, location, etc.)

 List is usually unordered (effectively random)

 Entries usually sorted by program that reads directory

 Directories typically stored in files

 Only need to manage one kind of secondary storage unit



Operations on Directories

 Search 

 Find a particular file within directory

 Create file 

 Add a new entry to the directory

 Delete file

 Remove an entry from the directory

 List directory 

 Return file names and requested attributes of entries

 Update directory

 Record a change to some file’s attributes 



Example Directory Operations

Unix

 Directories implemented in files

 Use file ops to create dirs

 C runtime library provides a 

higher-level abstraction for 

reading directories

 opendir(name)

 readdir(DIR *dir)

 seekdir(DIR *dir)

 closedir(DIR *dir)



Path Name Translation

 Let’s say you want to open “/one/two/three”

 What does the file system do?
 Open directory “/” (the root, well known, can always find)

 Search for the entry “one”, get location of “one” (in 
directory entry)

 Open directory “one”, search for “two”, get location of “two”

 Open directory “two”, search for “three”, get location of 
“three”

 Open file “three”

 Systems spend a lot of time walking directory paths
 This is why open is separate from read/write

 OS will cache prefix lookups for performance

 /a/b, /a/bb, /a/bbb, etc., all share “/a” prefix

Why do we need 

open and close 

operations?



Possible Directory 

Implementations

 single-level, two-level, tree-structured

 acyclic-graph directories: allows for shared directories
 the same file or subdirectory may be in 2 different directories

/

Alice

Tree-structured: Acyclic graph:

Bob

lpage.c

/

Alice Bob

lpage.c



/

Alice

Tree-structured: Acyclic graph:

Bob

lpage.c

/

Alice Bob

 Sharing can be implemented by creating a new 
directory entry called a link : a pointer to another file 
or subdirectory
 Symbolic, or soft, link

 Hard links

File Links

lpage.c



Symbolic vs. Hard Links

 Symbolic, or soft, link:
 Directory entry contains “true” path to the file

 Hard links:
 Second directory entry identical to the first 

File 

Name

Start 

Block

Type

… … …

lpage.c 42 file

... … …

‘~Alice’ directory

File 

Name

Start 

Block

Type

… … …

lpage.c 42 file

… … …

‘~Bob’ directory (hard link)

File 

Name

Start 

Block

Type

… … …

lpage.c 215 link

… … …

‘~Bob’ directory (soft link)

/

Alice Bob

lpage.c



Issues with Acyclic Graphs

 With links, a file may have multiple absolute path names
 Traversing a file system should avoid traversing shared 

structures more than once

 Sharing can occur with duplication of information, but 
maintaining consistency is a problem
 E.g. updating permissions in directory entry with hard link

/

Alice Bob

lpage.c



Issues with Acyclic Graphs

 Deletion: when can the space allocated to a shared file 
be deallocated and reused?
 Somewhat easier to handle with symbolic links

 Deletion of a link is OK; deletion of the file entry itself deallocates 
space and leaves the link pointers dangling

 Keep a reference count for hard links

/

Alice Bob

lpage.c



File Sharing

 File sharing has been around since timesharing
 Easy to do on a single machine

 PCs, workstations, and networks get us there (mostly)

 File sharing is incredibly important for getting work done
 Basis for communication and synchronization

 Two key issues when sharing files
 Semantics of concurrent access

 What happens when one process reads while another writes?

 What happens when two processes open a file for writing?

 Protection



Protection

 File systems implement some kind of protection system

 Who can access a file

 How they can access it

 A protection system dictates whether given action by a 

given subject on a given object should be allowed

 You can read and/or write your files, but others cannot

 You can read “/etc/motd”, but you cannot write it

Subject = Bob

Action = “Read”

Object = ~Alice/private.c 

private.c



Types of Access

 None

 Knowledge

 Execution

 Reading

 Appending

 Updating

 Changing Protection

 Deletion

 Unix provides only Read/Write/Execute permissions



Representing Protection

Access Control Lists (ACL)

 For each object, maintain a 

list of subjects and their 

permitted actions

Capabilities

 For each subject, maintain a 

list of objects and their 

permitted actions

/one /two /three

Alice rw - rw

Bob w - r

Charlie w r rw

Subjects

Objects

ACL Capability

/one /two /three

Alice rw - rw

Bob w - r

Charlie w r rw

Subjects

Objects



ACLs and Capabilities

 The approaches differ only in how the table is 
represented
 What approach does Unix use?

 Capabilities are easier to transfer between users
 They are like keys, can handoff, does not depend on subject

 In practice, ACLs are easier to manage
 Object-centric, easy to grant, revoke

 To revoke capabilities, have to keep track of all subjects that 
have the capability – a challenging problem

 ACLs have a problem when objects are heavily shared
 The ACLs become very large



File System Implementation

How do file systems use the disk to store files?

 File systems define a block size (e.g., 4KB)
 Disk space is allocated in granularity of blocks

 A “Master Block” determines location of root directory 
(aka partition control block, superblock)
 Always at a well-known disk location

 Often replicated across disk for reliability

 A free map determines which blocks are free, allocated
 Usually a bitmap, one bit per block on the disk

 Also stored on disk, cached in memory for performance

 Remaining disk blocks used to store files (and dirs)
 There are many ways to do this



Directory Implementation

 Option 1: Linear List

 Simple list of file names and pointers to data blocks

 Requires linear search to find entries

 Easy to implement, slow to execute

 And directory operations are frequent!

 Option 2: Hash Table

 Add hash data structure to linear list

 Hash file name to get pointer to the entry in the linear 

list



Disk Layout Strategies

 Files span multiple disk blocks

 How do you find all of the blocks for a file?
1. Contiguous allocation

 Like memory

 Fast, simplifies directory access

 Inflexible, causes fragmentation, needs compaction

2. Linked, or chained, structure

 Each block points to the next, directory points to the first

 Good for sequential access, bad for all others

3. Indexed structure (indirection, hierarchy)

 An “index block” contains pointers to many other blocks

 Handles random better, still good for sequential

 May need multiple index blocks (linked together)



Contiguous Allocation

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

File Name Start Blk Length

File A 2 3

File B 9 5

File C 18 8

File D 27 2

directoryDisk



Linked Allocation

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

File 

Name

Start Blk Last Blk

… … …

File B 1 22

… … …

directory



Indexed Allocation:  Unix Inodes

 Unix inodes implement an indexed structure for files

 Each inode contains 15 block pointers

 First 12 are direct block pointers (e.g., 4 KB data blocks)

 Then single, double, and triple indirect

…

0

12
13
14

1

… …

…

…



Unix Inodes and Path Search

 Unix Inodes are not directories

 They describe where on the disk the blocks for a 
file are placed
 Directories are files, so inodes also describe where the 

blocks for directories are placed on the disk

 Directory entries map file names to inodes
 To open “/one”, use Master Block to find inode for “/” on 

disk and read inode into memory

 inode allows us to find data block for directory “/”

 Read “/”, look for entry for “one”

 This entry gives locates the inode for “one”

 Read the inode for “one” into memory

 The inode says where first data block is on disk

 Read that block into memory to access the data in the 
file



File Buffer Cache

 Applications exhibit significant locality for reading 
and writing files

 Idea: Cache file blocks in memory to capture locality
 This is called the file buffer cache

 Cache is system wide, used and shared by all processes

 Reading from the cache makes a disk perform like memory

 Even a 4 MB cache can be very effective

 Issues
 The file buffer cache competes with VM (tradeoff here)

 Like VM, it has limited size

 Need replacement algorithms again (LRU usually used)



Caching Writes

 On a write, some applications assume that data 
makes it through the buffer cache and onto the disk
 As a result, writes are often slow even with caching

 Several ways to compensate for this
 “write-behind”

 Maintain a queue of uncommitted blocks

 Periodically flush the queue to disk

 Unreliable

 Battery backed-up RAM (NVRAM)

 As with write-behind, but maintain queue in NVRAM

 Expensive

 Log-structured file system

 Always write contiguously at end of previous write



Read Ahead

 Many file systems implement “read ahead”

 FS predicts that the process will request next block

 FS goes ahead and requests it from the disk

 This can happen while the process is computing on 

previous block

 Overlap I/O with execution

 When the process requests block, it will be in cache

 Compliments the on-disk cache, which also is doing read 

ahead

 For sequentially accessed files, can be a big win

 Unless blocks for the file are scattered across the disk

 File systems try to prevent that, though (during allocation)



Summary

 Files
 Operations, access methods

 Directories
 Operations, using directories to do path searches

 Sharing

 Protection
 ACLs vs. capabilities

 File System Layouts
 Unix inodes

 File Buffer Cache
 Strategies for handling writes

 Read Ahead



Next time…

 More details on space management, 

implementations, recovery


