
Operating Systems

Operating Systems

Sina Meraji

U of T

Recap

 Last time we looked at memory management

techniques

 Fixed partitioning

 Dynamic partitioning

 Paging

Page table

Physical Address

Virtual Address

Page Lookups Overview

Page number

Page frame Offset

Physical Memory

Offset

PTE

 What’s wrong with this approach?

 Need 2 references for address lookup (first page table, then actual

memory)

 Idea: Use hardware cache of page table entries

 Translation Lookaside Buffer (TLB)

 Small, fully-associative hardware cache of recently used translations

PTE

(in Memory)

Translation

Lookaside Buffer

(in hardware

cache)

TLB hit

TLB miss

TLBs

 TLBs are small (64 – 1024 entries)

 Still, address translations for most instructions are
handled using the TLB

 >99% of translations, but there are misses (TLB miss)…

 TLBs exploit locality

 Processes only use a handful of pages at a time

 16-48 entries/pages (64-192K)

 Only need those pages to be “mapped”

 Hit rates are therefore very important

Page table

Physical Address

Virtual Address

Summary so far: Paging

Page number

Page frame Offset

Physical Memory

Offset

PTE

PTE

(in Memory)

Translation

Lookaside Buffer

(in hardware

cache)

TLB hit

TLB miss

What happens if not all pages of all

processes fit into physical memory?

Page

Swap space

Page table

Physical Address

Virtual Address

Summary so far: Paging

Page number

Page frame Offset

Physical Memory

Offset

PTE

PTE

(in Memory)

Translation

Lookaside Buffer

(in hardware

cache)

TLB hit

TLB miss

What happens if page is evicted

from main memory?

• Set PTE to “invalid”

• Store disk location in PTE

Page

Page

Disk

How much space does a page

table take up?

 Need one PTE per page

 32 bit virtual address space w/ 4K pages
 = 220 PTEs

 4 bytes/PTE = 4MB/page table

 25 processes = 100MB just for page tables!
 And modern processors have 64-bit address spaces -> 16

petabytes for page table!

 Solutions
 Hierarchical (multi-level) page tables

 Hashed page tables

 Inverted page tables

Managing Page Tables

 How can we reduce space overhead?

 Observation: Only need to map the portion of

the address space actually being used (tiny

fraction of entire addr space)

 How do we only map what is being used?

 Can dynamically extend page table…

 Does not work if addr space is sparse (internal

fragmentation)

 Use another level of indirection: two-level

page tables (or multi-level page tables)

Motivation: two-level page tables

Stack

Code

Data

Heap

Virtual

Address

space

Page frame

Page frame

Page frame

Page Table 3

Page Table 2

Page Table 1

How does address

translation work now?

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multilevel Page Tables

(a) A 32-bit address with two page table fields.

(b) Two-level page tables.

Two-Level Page Tables

Virtual addresses (VAs) have three parts:

 Master page number, secondary page number, and offset

 Master page table maps VAs to secondary page table

 Secondary page table maps page number to physical frame

 Offset selects address within physical frame

Physical

Address

Virtual Address

Page table

Master page number Secondary

Master Page Table

Page frame Offset

Physical Memory

Offset

Page frame

Secondary Page Table

2-Level Paging Example

 32-bit virtual address space

 4K pages, 4 bytes/PTE

 How many bits in offset?

 4K = 12 bits, leaves 20 bits

 Want master/secondary page tables in 1 page each:

 4K/4 bytes = 1K entries.

▪ How many bits to address 1K entries?

▪ 10 bits

 master = 10 bits

 offset = 12 bits

 secondary = 32 – 10 – 12 = 10 bits

 This is why 4K is common page size!

Master page number Secondary Offset

Virtual Address

12 bits10 bits10 bits

Pentium Address Translation

Data Cache/
Main Memory

To page table

Pentium Address Translation

Data Cache/
Main Memory

Inverted Page Tables(Read the

book)

 Keep one table with an entry for each

physical page frame

 Entries record which virtual page # is stored

in that frame

 Need to record process id as well

 Less space, but lookups are slower

 References use virtual addresses, table is indexed

by physical addresses

 Use hashing (again!) to reduce the search time

Efficient Translations

 Our original page table scheme already

doubled the cost of doing memory lookups

 One lookup into the page table, another to fetch

the data

 Two-level page tables triple the cost!

 Two lookups into the page tables, a third to fetch

the data

 And this assumes the page table is in memory

 TLB’s hide the cost for frequently-used pages

Page allocation & eviction

 What happens when new page is allocated?

 Initially, pages are allocated from memory

 When memory fills up:

 Some other page needs to be evicted from memory

 This is why physical memory pages are called

“frames”

 Evicted pages go to disk (the swap file)

 When it evicts a page, the OS sets the PTE as

invalid and stores the location of the page in the

swap file in the PTE

Swap space

Page table

Physical Address

Virtual Address

Recap: Paging

Page number

Page frame Offset

Physical Memory

Offset

PTE

PTE

(in Memory)

Translation

Lookaside Buffer

(in hardware

cache)

TLB hit

TLB miss

What happens if process accesses

evicted page?

• Load page in memory

• Update PTE

Page

Page

Disk

Page Faults

 What happens when a process accesses a page that

has been evicted?

1. When a process accesses the page, the invalid PTE will

cause a trap (page fault)

3. The trap will run the OS page fault handler

4. Handler uses the invalid PTE to locate page in swap file

5. Reads page into a physical frame, updates PTE to point to it

6. Restarts process

Policy Decisions

 Page tables, MMU, TLB, etc. are mechanisms that

make virtual memory possible

 Next, we’ll look at policies for virtual memory

management:

 Fetch Policy – when to fetch a page

 Placement Policy – where to put the page

 Replacement Policy – what page to evict to make room?

Demand Paging

 Timing: Disk read is initiated when the process
needs the page

 Request size: Process can only page fault on one
page at a time, disk sees single page-sized read

 What alternative do we have?

Disk ArrayOperating
System

Application

ru
n

Load A sta
ll

Load B sta
ll

Memory
Mgmt

System

page
fault

restart

p
h
y
s. m

e
m

o
ry

Prepaging (aka Prefetching)

 Predict future page use at time of current fault

 On what should we base the prediction? What if it’s
wrong?

Without Prepaging With Prepaging

ru
n

Load A

sta
ll

Load B

sta
ll

Fetch A

Fetch B

ru
n

Load A

sta
ll

Load B

Fetch A & B

Policy Decisions

 Page tables, MMU, TLB, etc. are mechanisms that

make virtual memory possible

 Next, we’ll look at policies for virtual memory

management:

 Fetch Policy – when to fetch a page

 Demand paging vs. Prepaging

 Placement Policy – where to put the page

 Are some physical pages preferable to others?

 Replacement Policy – what page to evict to make room?

 Lots and lots of possible algorithms!

Placement Policy

 In paging systems, memory management hardware

can translate any virtual-to-physical mapping equally

well

 Why would we prefer some mappings over others?

 NUMA (non-uniform memory access) multiprocessors

 Any processor can access entire memory, but local memory

is faster

 Cache performance

 Choose physical pages to minimize cache conflicts

 These are active research areas!

Policy Decisions

 Page tables, MMU, TLB, etc. are mechanisms that

make virtual memory possible

 Next, we’ll look at policies for virtual memory

management:

 Fetch Policy – when to fetch a page

 Demand paging vs. Prepaging

 Placement Policy – where to put the page

 Are some physical pages preferable to others?

 Replacement Policy – what page to evict to make room?

 Lots and lots of possible algorithms!

Evicting the best page

 The goal of the replacement algorithm is to reduce the
fault rate by selecting the best victim page to remove

 Replacement algorithms are evaluated on a reference
string by counting the number of page faults

 Let’s start by cheating a little bit …

 Assume we know the reference string – what is the best
replacement policy in this case?

Evicting the best page

2 2

3

2

3

2

3

1

Cold misses:

first access to

a page

(unavoidable)

Capacity

misses:

caused by

replacement

due to limited

size of

memory

 Lesson 1:

 The best page to evict is the one never used again

 Will never fault on it

2

3

5

 Page address list: 2,3,2,1,5,4,5,3,5,3,2

Evicting the best page

 Page address list: 2,3,2,1,5,4,5,3,5,3,2

4

3

5

2 2

3

2

3

2

3

1

2

3

5

Cold misses:

first access to

a page

(unavoidable)

Capacity

misses:

caused by

replacement

due to limited

size of

memory

 Lesson 2:

 Never is a long time, so picking the page closest
to “never” is the next best thing

 Evicting the page that won’t be used for the
longest period of time minimizes the number of
page faults

 Proved by Belady, 1966

Belady’s Algorithm

 Belady’s algorithm is known as the optimal page
replacement algorithm because it has the lowest
fault rate for any page reference stream (aka OPT
or MIN)

 Idea: Replace the page that will not be used for the longest
period of time

 Problem: Have to know the future perfectly

 Why is Belady’s useful then? Use it as a yardstick

 Compare implementations of page replacement algorithms
with the optimal to gauge room for improvement

 If optimal is not much better, then algorithm is pretty good

 If optimal is much better, then algorithm could use some
work

 Random replacement is often the lower bound

What are possible replacement

algorithms?

 First-in-first-out (FIFO)

 Least-recently-used (LRU)

 Least-frequently-used

 Most-frequently-used

•Many of these require book-keeping …

•Let’s start with algorithms that require only

information contained in PTE

Page Table Entries (PTE)

 Modify (M)

 says whether or not page has been written

 Reference (R)

 says whether page has been accessed

 is cleared periodically (e.g. at clock interrupt)

 Valid (V)

 says whether PTE can be used

 Protection bits:

 what operations are allowed on page

M R V Prot Page Frame Number

1 1 1 3 26

Not-Recently-Used (NRU)

Divide pages into 4 classes:

 Class1: Not referenced, not modified

 Class 2: Not referenced, modified

 Class 3: Referenced, not modified

 Class 4: Referenced, modified

 Remove page at random from lowest-

numbered class that’s not empty

First-In First-Out (FIFO)

 FIFO is an obvious algorithm and simple to
implement

 Maintain a list of pages in order in which they were paged in

 On replacement, evict the one brought in longest time ago

 Why might this be good?

 Maybe the one brought in the longest ago is not being used

 Why might this be bad?

 Then again, maybe it’s not

 We don’t have any info to say one way or the other

 FIFO suffers from “Belady’s Anomaly”

 The fault rate might actually increase when the algorithm is
given more memory (very bad)

Example of Belady’s anomaly

 Page Address List: 0,1,2,3,0,1,4,0,1,2,3,4

0Oldest

10

4

2

3

4

2

3

1

4

2

0

1

4

0

1

4

0

1

4

3

0

1

2

3

0

1

2

3210Youngest

432104103210

Anomaly 0 1 2 3 0 1 4 0 1 2 3 4

Youngest 0 1 2 3 3 3 4 0 1 2 3 4

0 1 2 2 2 3 4 0 1 2 3

0 1 1 1 2 3 4 0 1 2

Oldest 0 0 0 1 2 3 4 0 1

3
 fra

m
e
s,

9
 fa

u
lts

4
 fra

m
e
s,

1
0
 fa

u
lts

Second-Chance

 Idea:

 FIFO (First-in-first-out) considers only age

 NRU (Not recently used) considers only usage

 Maybe we should combine the two!

 Second chance algorithm:

 Don’t evict the oldest page if it has been used.

 Evict the oldest page that has not been used.

 Pages that are used often enough to keep reference

bits set will not be replaced

Week 8 CSC369H1S

Implementing Second Chance

(clock)

Replace page that is “old enough”

 Arrange all of physical page frames in a big circle (clock)

 A clock hand is used to select a good LRU candidate

 Sweep through the pages in circular order like a clock

 If the ref bit (aka use bit) is off, it hasn’t been used recently

▪ Evict the page

 If the ref bit is on

▪ Turn it off and go to next page

 Arm moves quickly when pages are needed

 Low overhead when plenty of memory

37

Modelling Clock

 1st page fault:

 Advance hand to frame 4, use frame 3

 2nd page fault (assume none of these pages are
referenced)

 Advance hand to frame 6, use frame 5

R=1

0
1

2

3

45

6

7

8

Physical
Frames

11/03/2004CSC369H1S

Least Recently Used (LRU)

 LRU uses reference information to make a more
informed replacement decision

 Idea: We can’t predict the future, but we can make a
guess based upon past experience

 On replacement, evict the page that has not been
used for the longest time in the past (Belady’s: future)

 When does LRU do well? When does LRU do poorly?

 On average performs very well (close to Belady)

 But ….

11/03/2004CSC369H1S

Implementing Exact LRU

 Option 1:

 Time stamp every reference

 Evict page with oldest time stamp

 Problems:

 Need to make PTE large enough to hold meaningful time
stamp (may double size of page tables, TLBs)

 Need to examine every page on eviction to find one with
oldest time stamp

 Option 2:

 Keep pages in a stack. On reference, move the page to the
top of the stack. On eviction, replace page at bottom.

 Problems:

 Need costly software operation to manipulate stack on
EVERY memory reference!

Week 8 CSC369H1S

Modelling Exact LRU

• Page Address List: 0,1,2,3,0,1,4,0,1,2,3,4

0LRU page

10

2

3

4

1

2

3

0

1

2

4

0

1

1

4

0

0

1

4

3

0

1

2

3

0

1

2

3210MRU page

4321041032103 Frames

4 Frames 0 1 2 3 0 1 4 0 1 2 3 4

MRU page 0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 3 0 1 4 0 1 2 3

0 1 2 3 0 1 4 0 1 2

LRU page 0 1 2 3 3 3 4 0 1

1
0

 fa
u

lts
8

 fa
u

lts

41

Week 6 CSC369H1S

Approximating LRU

 Exact LRU is too costly to implement

 LRU approximations use the PTE reference bit

 Basic Idea:
 Initially, all R bits are zero; as processes execute, bits are set to 1

for pages that are used

 Periodically examine the R bits – we do not know order of use,
but we know pages that were (or were not) used

 Additional-Reference-Bits Algorithm
 Keep a counter for each page

 At regular intervals, for every page do:

 Shift R bit into high bit of counter register

 Shift other bits to the right

 Pages with “larger” counters were used more recently
42

Counting-based Replacement

 Count number of uses of a page

 Least-Frequently-Used (LFU)

 Replace the page used least often

 Pages that are heavily used at one time tend to stick around

even when not needed anymore

 Newly allocated pages haven’t had a chance to be used

much

 Most-Frequently-Used (MFU)

 Favours new pages

 Neither is common, both are poor approximations of

OPT

What are possible replacement

algorithms?

 Not-recently-used (NRU)

 First-in-first-out (FIFO)

 Least-recently-used (LRU)

 Least-frequently-used

 Most-frequently-used

Ease of

implementation
Performance

+ ~

+ ~

- ++

- -

- -

What are possible replacement

algorithms?

 Not-recently-used (NRU)

 First-in-first-out (FIFO)

 Least-recently-used (LRU)

 Least-frequently-used

 Most-frequently-used

Ease of

implementation
Performance

+ ~

+ ~

- ++

- -

- -

What are possible replacement

algorithms?

 Not-recently-used (NRU)

 First-in-first-out (FIFO)

 Least-recently-used (LRU)

 Least-frequently-used

 Most-frequently-used

 Second chance

Ease of

implementation
Performance

+ ~

+ ~

- ++

- -

- -

+ +

Fixed vs. Variable Space

 In a multiprogramming system, we need a way to
allocate memory to competing processes

 Problem: How to determine how much memory to give
to each process?

 Fixed space algorithms

 Each process is given a limit of pages it can use

 When it reaches the limit, it replaces from its own pages

 Local replacement

▪ Some processes may do well while others suffer

 Variable space algorithms

 Process’ set of pages grows and shrinks dynamically

 Global replacement - one process can ruin it for the rest

 Local replacement - replacement and set size are separate

Working Set Model

6 1 5 2 1 6 2 7 5 1 4 4 3 3 4 1 3 4 4 4

5 pages
{1,2,5,6,7}

2 or 3 pages
{3,4} or {1,3,4}

Process 1 Process 2

 How do you decide how large the fixed or variable
space for a process should be?

 Depends on access pattern …

Working Set Model

 A working set of a process is used to model the

dynamic locality of its memory usage

 Defined by Peter Denning in 60’s

 Definition

 WS(t,) = {pages P such that P was referenced in the time

interval (t, t-)}

 t = time,  = working set window (measured in page refs)

 A page is in the working set (WS) only if it was

referenced in the last  references

…2 6 1 5 2 1 6 7 5 1 6 1 2 3 4 4 4 3 4 3 4 4 4 1

t1 t2WS(t1) = {1,2,5,6,7} WS(t2) = {3,4}

Working Set Size

 The working set size is the number of pages in the
working set

 The number of pages referenced in the interval (t, t-)

 The working set size changes with program locality

 During periods of poor locality, you reference more pages

 Within that period of time, the working set size is larger

 Intuitively, want the working set to be the set of pages
a process needs in memory to prevent heavy faulting

 Each process has a parameter  that determines a working
set with few faults

 Denning: Don’t run a process unless working set is in
memory

Working Set Problems

 Problems

 How do we determine ?

 How do we know when the working set changes?

 Too hard to answer

 So, working set is not used in practice as a page
replacement algorithm

 However, it is still used as an abstraction

 The intuition is still valid

 When people ask, “How much memory does
Netscape need?”, they are in effect asking for the
size of Netscape’s working set

Page Fault Frequency (PFF)

 Page Fault Frequency (PFF) is a variable space
algorithm that uses a more ad-hoc approach

 Monitor the fault rate for each process

 If the fault rate is above a high threshold, give it more memory

 So that it faults less

 But not always (FIFO, Belady’s Anomaly)

 If the fault rate is below a low threshold, take away memory

 Should fault more

 But not always

 Hard to use PFF to distinguish between changes in
locality and changes in size of working set

Thrashing

 Page replacement algorithms avoid thrashing

 When more time is spent by the OS in paging data back and
forth from disk than executing user programs

 No time spent doing useful work (making progress)

 In this situation, the system is overcommitted

 No idea which pages should be in memory to reduce faults

 Could just be that there isn’t enough physical memory for all
of the processes in the system

 Ex: Running Windows Vista with 4 MB of memory…

 Possible solutions

 Swapping – write out all pages of a process and suspend it

 Buy more memory

Windows XP Paging Policy

 Local page replacement

 Per-process FIFO

 Pages are stolen from processes using more than

their minimum working set

 Processes start with a default of 50 pages

 XP monitors page fault rate and adjusts working-

set size accordingly

 On page fault, cluster of pages around the missing

page are brought into memory

Linux Paging

 Global replacement, like most Unix

 Modified second-chance clock algorithm

 Pages age with each pass of the clock hand

 Pages that are not used for a long time will

eventually have a value of zero

 Continually under development…

