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Recap

 Last time we looked at a number of possible 

scheduling policies

 First-Come-First-Serve (FCFS)

 Shortest-Job-First (SJF)

 Round-robin (RR)

 Priority scheduling



What do real systems do?

 Combination of

 Multi-level queue scheduling

 Typically with RR and priorities

 Feedback scheduling



New topic:

 Memory management!



Memory Management

 Every active process needs memory

 CPU scheduling allows processes to share 

(multiplex) the processor

 Must figure out how to share main memory as well

 What should our goals be?

 Support enough active processes to keep CPU busy

 Use memory efficiently (minimize wasted memory)

 Keep memory management overhead small

 … while satisfying basic requirements



Requirements

 Relocation

 Programmers don’t know what physical memory will be 
available when their programs run

 Scheduler may swap processes in/out of memory, need to be 
able to bring it back in to a different region of memory

 This implies we will need some type of address translation

 Logical Organization

 Machine accesses memory addresses as a one-dimensional 
array of bytes

 Programmers organize code in modules

 Need to map between these views



More requirements

 Protection
 A process’s memory should be protected from unwanted 

access by other processes, both intentional and accidental

 Requires hardware support

 Sharing
 In some instances, processes need to be able to access 

the same memory

 Need ways to specify and control what sharing is allowed

 Physical Organization
 Memory and Disk form a two-level hierarchy, flow of 

information between levels must be managed

 CPU can only access data in registers or memory, not disk



Meeting the requirements

 Modern systems use virtual memory

 Complicated technique requiring hardware & software support

 We’ll build up to virtual memory by looking at some 

simpler schemes first

 Fixed partitioning

 Dynamic partitioning

 Paging

 Segmentation

 We’ll begin with loading and address translation



Address Binding
 Programs must be in memory to execute

 Program binary is loaded into a process

 Needs memory for code (instructions) & data

 Addresses in program must be translated to real addresses

 Programmers use symbolic addresses (i.e., variable 
names) to refer to memory locations

 CPU fetches from, and stores to, real memory addresses

int main() {

int y;

y = random();

printf(“%d”,y);

}
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When are addresses bound?
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When are addresses bound?

 Compile time

 Called absolute code since binary contains 
real addresses

 Disadvantage?

 Must know what memory process will use during 
compilation

 No relocation is possible

int main() {

int y;

y = random();

printf(“%d”,y);

}

Compile
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binary Load
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When are addresses bound?
 Load time

 Compiler translates (binds) symbolic addresses to logical, 
relocatable addresses within compilation unit (source file)

 Linker takes collection of object files and translates 
addresses to logical, absolute addresses within executable
 Resolves references to symbols defined in other files/modules

 Loader translates logical absolute addresses to physical
addresses when program is loaded into memory

 Disadvantage?

 Programs can be loaded to different address when they start, but 
cannot be relocated later

int main() {

int y;

y = random();

printf(“%d”,y);

}
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Load-Time Binding Example

 Programs can be loaded to different 
address when they start, but cannot be 
relocated later

4095 …

… …

12 ADD

8 MOV

4 …

0 JMP 12

4095 …

… …

12 SUB

8 CMP

4 …

0 JMP 8

8191 …

… …

4099 ADD

4098 MOV

4097 …

4096 JMP 4099

4095 …

… …

12 SUB

8 CMP

4 …

0 JMP 8

program1 program2

Week 6 CSC 369



A better plan

 Bind addresses at execution time

 Executable object file, a.out, contains logical 
addresses for entire program

 translated to a real, physical address during execution

 Flexible, but requires special hardware (as we will see)

main.c foo.c

Translators

(cpp, cc1, as)

Translators

(cpp, cc1, as)

main.o foo.o

Linker (ld)

a.out



Memory management

 Two key problems:

 How do you map logical to physical addresses?

 How do you allocate physical memory for a process?



Address translation: Logical 

and physical addresses

int main() {

int y;

y = random();

printf(“%d”,y);

}

Compile

Program binary

Load &
Execute

Uses symbolic addresses

(variable names)

Stack

Code

Data 

Heap

Uses logical addresses

(relative to start of stack frame)

Source code Process

Stack

Code

Data 

Heap

Memory

Logical addresses need 

to be translated to 

physical addresses

Assume for now:
-Entire address space of process must be in main memory
-A process uses a contiguous chunk of main memory

0x00000000 0x7FFFFFFF



How to allocate physical memory?

Stack

Code (Text Segment)

Static Data Segment)

Heap (Dyanamic

Memory Alloc)

SP

PC

brk

Process A

Stack

Code (Text Segment)

Static Data Segment)

Heap (Dyanamic

Memory Alloc)

SP

PC

brk

Process B

Operating system
8M

Available
…..

Memory

Goals:

• Efficient management

• Don’t let memory go wasted

Assumptions:

• Entire process must be in 

memory to run



Fixed Partitioning

 Divide memory into regions with 
fixed boundaries

 Can be equal-size or unequal-size

 A single process can be loaded 
into each remaining partition

 Example: 2 processes with 5M 
and 2M, respectively.

Operating system
8M

Available
8M

Available
8M

Available
8M

Available
8M

Process 1 - 5M

Unusable - 3M

Process 2 - 2M

Unusable - 6M

Available
8M

Available
8M

Process 1 - 5M

Unusable - 3M

Process 2 - 2M

Unusable - 6M
Disadvantages?

 Memory is wasted if process is 
smaller than partition (internal 
fragmentation)

 Programmer must deal with programs 
that are larger than partition 
(overlays)



Placement w/ Fixed Partitions

 Number of partitions determines number of active 
processes

 If all partitions are occupied by waiting processes, 
swap some out, bring others in

 Equal-sized partitions:

 Process can be loaded into any available partition

 Unequal-sized partitions:

 Queue-per-partition, assign process to smallest partition in 
which it will fit

 A process always runs in the same size of partition

 Single queue, assign process to smallest available partition



Placement Example

(Queue per partition)

Operating system
8M

Available
4M

Available
8M

Available
16M

Process 1 - 5M
Process 2 - 7M

Available
4M

Process 1 and Process 2 fit in same 
partition.  With smallest-partition policy, 
both must share 8M partition while 16M 
partition goes unused.



Dynamic Partitioning

 Partitions vary in length and number over time

 When a process is brought in to memory, a partition 

of exactly the right size is created to hold it

Operating system
8M

Available
32M

Operating system
8M

Available
27M

Operating system
8M

Available
18M

Process 1 - 5M Process 1 - 5M

Process 2 - 7M

Disadvantages?

Process 3 - 2M



More Dynamic Partitioning

 As processes come and go, “holes” 
are created

 Some blocks may be too small for any 
process

 This is called external fragmentation

 OS may move processes around to 
create larger chunks of free space

 E.g. if Process 3 were allocated 
immediately following Process 1, we 
would have a 25M free partition

 This is called compaction

 Requires processes to be relocatable

Operating system
8M

Available
18M

Process 1 - 5M

Available - 7M

Process 3 - 2M



Heap Management

 How are malloc() / free() implemented?

Stack

Code (Text Segment)

Static Data Segment)

Heap (Dynamic

Memory Alloc)

SP

PC

brk

Process 

Allocate/free memory

from heap

 Manage contiguous range of 
logical addresses

 malloc(size) returns a pointer to a 
block of memory of at least “size” 
bytes, or NULL 

 free(ptr) releases the previously-
allocated block pointed to by “ptr”

 Dynamic partitioning system



Tracking Memory Allocation

 Bitmaps

 1 bit per allocation unit

 “0” == free, “1” == allocated

 Advantage/Disadvantages?

 Allocating a N-unit chunk requires scanning 
bitmap for sequence of N zero’s

 Slow 

111000001110011111000011

Memory:

Bitmap:



Tracking Allocation (2)

 Free lists

 Maintain linked list of allocated and free segments

 List needs memory too.  Where do we store it?

 Implicit list

 Each block has header that records size and status 

(allocated or free)

 Searching for free block is linear in total number of blocks

5/f 2/f 4/f4/a 4/a 6/a 3/a

 Explicit list

 Store pointers in free blocks to create doubly-linked list

5/f 3/f 4/f4/a 4/a 6/a 3/a



Freeing Blocks

 Adjacent free blocks can be coalesced

5/f 2/f 4/f4/a 4/a 6/a 3/a

p = malloc(3);
. . . 
free(p);

5/f 2/f 4/f4/a 4/f 6/a 3/a

11/f 4/f4/a 6/a 3/a

 Easier if all blocks end with a footer with 

size/status info (called boundary tag)



Placement Algorithms

 Compaction is time-consuming and not always possible

 We can reduce the need for it by being careful about 

how memory is allocated to processes over time

 Given multiple blocks of free memory of sufficient size, 

how should we choose which one to use?

Operating system
8M

Available
18M

Process 1 - 5M

Available - 7M

Process 3 - 2M

Process 4 - 6M
Where should

we place process?



Placement Algorithms

 First-fit - choose first block that is large enough; search can 

start at beginning, or where previous search ended (called 

next-fit)

 Best-fit - choose the block that is closest in size to the request

 Worst-fit – choose the largest block

 Quick-fit – keep multiple free lists for common block sizes

Operating system
8M

Available
18M

Process 1 - 5M

Available - 7M

Process 3 - 2M

Process 4 - 6M
Where should

we place process?



Comparing Placement Algs.

 First-fit
 Simplest, and often fastest and most efficient

 May leave many small fragments near start of memory that 
must be searched repeatedly

 Best-fit
 left-over fragments tend to be small (unusable)

 In practice, similar storage utilization to first-fit

 Worst-fit
 Not as good as best-fit or first-fit in practice

 Quick-fit
 Great for fast allocation, generally harder to coalesce



Problems with Partitioning

 With fixed partitioning, internal fragmentation and 

need for overlays are big problems

 Scheme is too inflexible

 With dynamic partitioning, external fragmentation

and management of space are major problems

 Basic problem is that processes must be allocated 

to contiguous blocks of physical memory

 Hard to figure out how to size these blocks given that 

processes are not all the same

 We’ll look now at paging as a solution



Paging

 Partition memory into equal, fixed-size chunks

 These are called page frames or simply frames

 Divide processes’ memory into chunks of the 

same size

 These are called pages

 Possible page frame sizes are restricted to 

powers of 2 to simplify translation



Example of Paging

 We can fit Process D into memory, even though we 

don’t have 3 contiguous frames available!

A.0
A.1
A.2

C.0
C.1

0
1
2
3
4
5
6
7
8

Main memory
A.0
A.1
A.2
D.0
D.1
C.0
C.1
D.2

0
1
2
3
4
5
6
7
8

Main memory

Suppose a new process, D, arrives needing 3 frames of memory



Example of Paging

 Is there fragmentation with paging?
 External fragmentation is eliminated

 Internal fragmentation is at most a part of one 
page per process

A.0
A.1
A.2

C.0
C.1

0
1
2
3
4
5
6
7
8

Main memory
A.0
A.1
A.2
D.0
D.1
C.0
C.1
D.2

0
1
2
3
4
5
6
7
8

Main memory

Suppose a new process, D, arrives needing 3 frames of memory



Address translation

int main() {

int y;

y = random();

printf(“%d”,y);

}

Compile

Program binary

Load &
Execute

Uses symbolic addresses

(variable names)

Stack

Code

Data 

Heap

Uses logical addresses

(relative to start of stack frame)

Source code Process

Stack

Code

Data 

Heap

Memory

Logical addresses need 

to be translated to 

physical addresses

0x00000000 0x7FFFFFFF



Address translation

 Swapping and compaction require a way to 

change the physical memory addresses a 

process refers to

 Really, need dynamic relocation (aka 

execution-time binding of addresses)

 process refers to relative addresses, hardware 

translates to physical address as instruction is 

executed



Address translation

Uses symbolic addresses

(variable names)

Uses logical addresses

(relative to start of stack frame)

Logical addresses need 

to be translated to 

physical addresses

 How does address translation work for

 Static/dynamic partitioning?

 Paging?

int main() {

int y;

y = random();

printf(“%d”,y);

}

Compile

Program binary

Load &
Execute

Stack

Code

Data 

Heap

Source code Process

Stack

Code

Data 

Heap

Memory

0x00000000 0x7FFFFFFF



Address translation:

Partitioning schemes

 All memory used by process is contiguous in 

these methods

Load &
Execute

Stack

Code

Data 

Heap

Stack

Code

Data 

Heap

Memory

0x00000000 0x7FFFFFFF

 Basic idea:  add relative address to process starting 
(base) address to form real, or physical, address

 2 registers, “base” and “limit”

base

base + limit

Why do we need to 
keep track of limit?



Hardware for Relocation

 Basic idea:  add relative address to process starting 
(base) address to form real, or physical, address

 check that address generated is within process’s space

 2 registers, “base” and “limit”

 When process is assigned to CPU (i.e., set to “Running” 
state), load base register with starting address of process

 Load limit register with last address of process

CPU

Logical

address

<

limit

register

Memory+

Physical

address

base

register

yes

no

Addressing error



 Basic idea:  add relative address to process starting 
(base) address to form real, or physical, address

 check that address generated is within process’s space

 2 registers, “base” and “limit”

 When process is assigned to CPU (i.e., set to “Running” 
state), load base register with starting address of process

 Load limit register with last address of process

Done in hardware 

by MMU (Memory 

Management Unit)

Hardware for Relocation

CPU

Logical

address

<

limit

register

Memory+

Physical

address

base

register

yes

no

Addressing error



Address translation for Paging

 Need more than base & limit registers now

 Operating system maintains a page table for each 
process

A.0
A.1
A.2
D.0
D.1
C.0
C.1
D.2

0
1
2
3
4
5
6
7
8

Main memory

D.0
D.1
D.2

0
1
2

What does an address specify now?



Support for Paging
 Operating system maintains page table for each process

 Page table records which physical frame holds each page

 virtual addresses are now page number + page offset

 page number = ?
▪ =vaddr / page_size

 page offset = ?
▪ vaddr % page_size

 Simple to calculate if page size is power-of-2

0
1
2

•Process D consisting of 3 pages

•Page size is 8 bytes

A.0
A.1
A.2
D.0
D.1
C.0
C.1
D.2

0
1
2
3
4
5
6
7
8

Main memory

Page 

number

0 3
Page# Frame#

1 4
2 7



Support for Paging

 Operating system maintains page table for each process

 Page table records which physical frame holds each page

 virtual addresses are now page number + page offset

 page number = vaddr / page_size

 page offset = vaddr % page_size

 Simple to calculate if page size is power-of-2

 On each memory reference, processor translates page number 
to frame number and adds offset to generate a physical address

 Keep a “page table base register” to quickly locate the page 
table for the running process



Example Address Translation

 Suppose addresses are 16 bits, pages are 4K (4096 bytes)

 How many bits of the address do we need for offset?

 12 bits (2^12 = 4096)

 What is the maximum number of pages for a process?

 2^4

11
OffsetPg #

012Bit 15



Example Address Translation

 To translate virtual address: 0x3468

 Extract page number (high-order 4 bits) 
-> page = vaddr >> 12  == 3

 Get frame number from page table 

 Combine frame number with page offset
 offset = vaddr % 4096

 paddr = frame * 4096 + offset
▪ paddr = (frame << 12) | offset

3 468
Page# Offset

0 1
Page# Frame#

1 4
2 5
3 7

7 468
Frame# Offset

Logical address

physical address

0011  0100 0110 1000
11 012Bit 15

OffsetPg #



Page Table Entries (PTE)

 Page table entries (PTEs) control mapping

 Modify bit (M) says whether or not page has been written

 Set when a write to a page occurs

 Reference bit (R) says whether page has been accessed

 Set when a read or write to the page occurs

 Valid bit (V) says whether PTE can be used

 Checked on each use of virtual address

 Protection bits specify what operations are allowed on 
page

 Read/write/execute

 Page frame number (PFN) determines physical page

 Not all bits are provided by all architectures

M R V Prot Page Frame Number

1 1 1 3 26



Page table Physical Address

Virtual Address

Page Lookups Overview

Page number

Page frame Offset

Physical Memory

Offset

PTE

 What’s wrong with this approach?

 Need 2 references for address lookup (first page table, then actual 

memory)

 Idea: Use hardware cache of page table entries

 Translation Lookaside Buffer (TLB)

 Small hardware cache of recently used translations



Page table

Physical Address

Virtual Address

Page Lookups Overview

Page number

Page frame Offset

Physical Memory

Offset

PTE

 What’s wrong with this approach?

 Need 2 references for address lookup (first page table, then actual 

memory)

 Idea: Use hardware cache of page table entries

 Translation Lookaside Buffer (TLB)

 Small, fully-associative hardware cache of recently used translations

PTE

(in Memory)

Translation 

Lookaside Buffer

(in hardware 

cache)

TLB hit

TLB miss



TLBs 

Translate virtual page #s into PTEs (not physical addrs)

 Can be done in a single machine cycle

 TLBs implemented in hardware

 Fully associative cache (all entries looked up in parallel)

 Cache tags are virtual page numbers

 Cache values are PTEs (entries from page tables)

 With PTE + offset, can directly calculate physical address



TLBs

 TLBs are small (64 – 1024 entries)

 Still, address translations for most instructions are 
handled using the TLB

 >99% of translations, but there are misses (TLB miss)…

 TLBs exploit locality

 Processes only use a handful of pages at a time

 16-48 entries/pages (64-192K)

 Only need those pages to be “mapped”

 Hit rates are therefore very important



Managing TLBs

 Who places translations into the TLB (loads the TLB)?

 Hardware (Memory Management Unit)

 Software loaded TLB (OS)



Managing TLBs

 Who places translations into the TLB (loads the TLB)?

 Hardware (Memory Management Unit)

 Knows where page tables are in main memory

 OS maintains tables, HW accesses them directly

 Tables have to be in HW-defined format (inflexible)

 Software loaded TLB (OS)

 TLB faults to the OS, OS finds appropriate PTE, loads it in TLB

 Must be fast (but still 20-200 cycles)

 CPU ISA has instructions for manipulating TLB

 Tables can be in any format convenient for OS (flexible)



Managing TLBs (2)

 OS ensures that TLB and page tables are consistent

 When it changes the protection bits of a PTE, it needs to 

invalidate the PTE if it is in the TLB

 Reload TLB on a process context switch

 Invalidate all entries

 Why?  

 When the TLB misses and a new PTE has to be 

loaded, a cached PTE must be evicted

 Choosing PTE to evict is called the TLB replacement policy

 Implemented in hardware, often simple



Page table

Physical Address

Virtual Address

Summary so far: Paging 

Page number

Page frame Offset

Physical Memory

Offset

PTE

PTE

(in Memory)

Translation 

Lookaside Buffer

(in hardware 

cache)

TLB hit

TLB miss

What happens if not all pages of all 

processes fit into physical memory?

Page



Swap space

Page table

Physical Address

Virtual Address

Summary so far: Paging  

Page number

Page frame Offset

Physical Memory

Offset

PTE

PTE

(in Memory)

Translation 

Lookaside Buffer

(in hardware 

cache)

TLB hit

TLB miss

What happens if page is evicted

from main memory?

• Set PTE to “invalid”

• Store disk location in PTE

Page

Page

Disk



How much space does a page 

table take up?

 Need one PTE per page

 32 bit virtual address space w/ 4K pages 
 = 220 PTEs

 4 bytes/PTE = 4MB/page table

 25 processes = 100MB just for page tables!
 And modern processors have 64-bit address spaces -> 16 

petabytes for page table!

 Solutions
 Hierarchical (multi-level) page tables

 Hashed page tables

 Inverted page tables



Managing Page Tables

 How can we reduce space overhead?

 Observation: Only need to map the portion of 

the address space actually being used (tiny 

fraction of entire addr space)

 How do we only map what is being used?

 Can dynamically extend page table…

 Does not work if addr space is sparse (internal 

fragmentation)

 Use another level of indirection: two-level 

page tables (or multi-level page tables)



Motivation: two-level page tables

Stack

Code

Data 

Heap

Virtual

Address

space

Page frame

Page frame

Page frame

Page Table 3

Page Table 2

Page Table 1

How does address 

translation work now?



Two-Level Page Tables

Virtual addresses (VAs) have three parts:

 Master page number, secondary page number, and offset

 Master page table maps VAs to secondary page table

 Secondary page table maps page number to physical frame

 Offset selects address within physical frame

Physical 

Address

Virtual Address

Page table

Master page number Secondary

Master Page Table

Page frame Offset

Physical Memory

Offset

Page frame

Secondary Page Table



2-Level Paging Example

 32-bit virtual address space

 4K pages, 4 bytes/PTE

 How many bits in offset? 

 4K = 12 bits, leaves 20 bits

 Want master/secondary page tables in 1 page each: 

 4K/4 bytes = 1K entries.  

▪ How many bits to address 1K entries?

▪ 10 bits 

 master = 10 bits

 offset = 12 bits

 secondary = 32 – 10 – 12 = 10 bits

 This is why 4K is common page size!

Master page number Secondary Offset

Virtual Address

12 bits10 bits10 bits



Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multilevel Page Tables

(a) A 32-bit address with two page table fields. 

(b) Two-level page tables.



Pentium Address Translation

Data Cache/
Main Memory

To page table



Pentium Address Translation

Data Cache/
Main Memory



64-bit Address Spaces

 Suppose we just extended the hierarchical 
page tables with more levels

 4K pages  52 bits for page numbers

 Maximum 1024 entries per level  6 levels

 Too much overhead

 16K pages  48 bits for page numbers

 Maximum 4096 entries per level -> 4 levels

 Better, but still a lot



Inverted Page Tables

 Keep one table with an entry for each 

physical page frame

 Entries record which virtual page # is stored 

in that frame 

 Need to record process id as well

 Less space, but lookups are slower

 References use virtual addresses, table is indexed 

by physical addresses

 Use hashing to reduce the search time



Efficient Translations

 Our original page table scheme already 

doubled the cost of doing memory lookups

 One lookup into the page table, another to fetch 

the data

 Two-level page tables triple the cost!

 Two lookups into the page tables, a third to fetch 

the data

 And this assumes the page table is in memory

 TLB’s hide the cost for frequently-used pages


