
Operating Systems

Sina Meraji

U of T

Today …

 Another Synchronization example

 Scheduling

Another Synchronization

Example

 Dining philosophers

Higher-level Abstractions for CS’s

 Locks

 Very primitive, minimal semantics

 Operations: acquire(lock), release(lock)

 Semaphores

 Basic, easy to understand, hard to program with

 Monitors

 High-level, ideally has language support (Java)

 Messages

 Simple model for communication &
synchronization

 Direct application to distributed systems

Semaphores

 Semaphores are abstract data types that
provide synchronization. They include:

 An integer variable, accessed only through 2
atomic operations

 The atomic operation wait (also called P or
decrement) - decrement the variable and block
until semaphore is free

 The atomic operation signal (also called V or
increment) - increment the variable, unblock a
waiting a thread if there are any

 A queue of waiting threads

Types of Semaphores

 Mutex (or Binary) Semaphore

 Represents single access to a resource

 Guarantees mutual exclusion to a critical section

 Counting semaphore

 Represents a resource with many units available,
or a resource that allows certain kinds of
unsynchronized concurrent access (e.g., reading)

 Multiple threads can pass the semaphore

 Max number of threads is determined by
semaphore’s initial value, count

 Mutex has count = 1, counting has count = N

Semaphores
 Integer variable count with two atomic

operations

 Operation wait (also called P or decrement)
 block until count > 0 then decrement variable

 Operation signal (also called V or increment)
 increment count, unblock a waiting thread if any

 A queue of waiting threads

wait(semaphore *s) {

while (s->count == 0) ;

s->count -= 1;

}

signal(semaphore *s) {

s->count += 1;

…… //unblock one waiter

}

Using Binary Semaphores
 Use is similar to locks, but semantics are different

typedef struct account {

double balance;

semaphore S;

} account_t;

Withdraw(account_t *acct, amt){

double bal;

wait(acct->S);

bal = acct->balance;

bal = bal - amt;

acct->balance = bal;

signal(acct->S);

return bal;

}

wait(S);

bal = acct->balance;

bal = bal - amt;

wait(acct->S);

acct->balance = bal;

signal(acct->S);

...

signal(acct->S);

Have semaphore, S, associated with acct Three threads execute Withdraw()

wait(acct->S);

...

signal(acct->S);

It is undefined which thread runs after a signal

Dining Philosophers

 A philosopher needs two forks to eat.

 Idea for protocol:

 When philosopher gets hungry grab left fork, then grab right fork.

 Is this a good solution?

A nonsolution to the dining philosophers problem.

Dining Philosophers Problem (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

A solution to the dining philosophers problem.

Dining Philosophers Problem (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

A solution to the dining philosophers problem.

Dining Philosophers Problem (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Take fork. . .

A solution to the dining philosophers problem.

Dining Philosophers Problem (4)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Put fork

Review: The Process Concept

 Process = job / unit of work

 Process = a program in execution

 A process contains all state of program in execution

 An address space

 Set of OS resources

 Open files network connections …

 Set of general-purpose registers with

current values

 Accounting info

 A process is named by its process ID (PID)

Stack

Heap

Data

Text

SP

PC

Process states

 The OS manages processes by keeping
track of their state

 Different events cause changes to a process
state, which the OS must record/implement

New Ready Running Terminated

Blocked

Admit
Dispatch

Time-out

Event
Wait

Event
Occurs

Exit

State Queues

How does the OS keep track of processes?

 The OS maintains a collection of queues that

represent the state of all processes in the system

 Typically, the OS has one queue for each state

 Ready, waiting, etc.

 Each PCB is queued on a state queue according to

its current state

 As a process changes state, its PCB is unlinked

from one queue and linked into another

State Queues

PCB1 PCB3 PCB8
head

PCB4

Ready

Queue

Sleep

Queue

.

.

.

PCB2
head

• There may be many wait queues,
one for each type of wait (disk,
console, timer, network, etc.)

Disk I/O

Queue

Process Scheduling

 Only one process can run at a time on a CPU

 Scheduler decides which process to run

 Goal of CPU scheduling:

 Give illusion that processes are running concurrently

 Maximize CPU utilization

 Will talk about CPU scheduling in more detail …

Scheduling Goals

 All systems

 Fairness - each process receives fair share of CPU

 Avoid starvation

 Policy enforcement - usage policies should be met

 Balance - all parts of the system should be busy

 Batch systems

 Throughput - maximize jobs completed per hour

 Turnaround time - minimize time between
submission and completion

 CPU utilization - keep the CPU busy all the time

Types of Scheduling

 Non-preemptive scheduling

 once the CPU has been allocated to a process, it

keeps the CPU until it terminates

 Suitable for batch scheduling

 Preemptive scheduling

 CPU can be taken from a running process and

allocated to another

 Needed in interactive or real-time systems

Scheduling Algorithms: FCFS

 “First come, first served”

 Non-preemptive

 Choose the process at the head of the FIFO

queue of ready processes

FCFS Example

 Note C waits six times as long as it runs!

 Total wait time is 8, avg. wait is 8/3=2.66

Process Arrival

Time

Service

Time

A 0 3

B 1 5

C 2 1

A
B

C
B

0 2 4 6 8

C C

Problem with FCFS

 Average waiting time often quite long

 Convoy effect: all other processes wait for the one

big process to release the CPU

What can we do to minimize wait times?

Algorithm: Shortest-Job-First

 Choose the process with the shortest

processing time

SJF Example

 FCFS:Total wait time is 8, avg. wait is 8/3=2.66

 SJF: Total wait time is 4, avg. wait is 4/3=1.33

Proces

s

Arrival

Time

Service

Time

A 0 3

B 1 5

C 2 1

A
B

C
B

0 2 4 6 8

C C

A
B
C C

BB

FCFS

SJF

We cut wait time in half just by scheduling!

Algorithm: Shortest-Job-First

 Choose the process with the shortest

processing time

 Provably optimal average wait time

 Problems with SJF?

 Need to know processing time in advance

 Programmer estimate

 History statistics

 Starvation + fairness?

So far …

 SJF has short wait times, but is unfair

 FCFS is fair, but can lead to long wait times

 Short jobs can get stuck behind long jobs

How can we be fair, but avoid the “short jobs
getting stuck behind long jobs” problem?

IDEA: Allow preemption

•Don’t always run jobs to completion

•Preempt a job that’s running too long

Algorithm: Round Robin

 Designed for time-sharing systems

 Pre-emptive

 Ready queue is circular

 Each process is allowed to run for time quantum q

before being preempted and put back on queue

 Choice of quantum (aka time slice) is critical

 as q , RR FCFS;

 as q 0, RR processor sharing (PS)

 we want q to be large w.r.t. the context switch time

Priority Scheduling

 A priority, p, is associated with each process

 Highest priority job is selected from Ready
queue

 Can be pre-emptive or non-preemptive

 Enforcing this policy is tricky

 A low priority task may never get to run
(starvation)

 A low priority task may prevent a high priority task
from making progress by holding a resource
(priority inversion)

Priority Inversion Example
 Mars Rover Pathfinder bug

 In the press:
 “software glitches”,

 “computer was doing too many things at once”

Shared memory

(exclusive use)

“bus management”

HIGH priority

“data gathering”

LOW priority

“communications task”

(does not use bus)

MED priority

Priority Inversion Example

 Mars Rover Pathfinder bug
 Shared “information bus” – essentially shared memory

area

 Mutual exclusion provided by lock on info bus

 High priority “bus management” task moves data in/out of
information bus

 Low priority “data gathering” task writes data to the
information bus

 Medium priority, compute-bound “communications” task
that does not use the information bus

 See the problem?
 Data gathering task locks bus and is preempted by higher

priority bus management task, which blocks on the lock. If
communications task becomes runnable, data gathering
task can’t complete and release the lock so high priority
task stays blocked.

What do real systems do?

 Combination of

 Multi-level queue scheduling

 Typically with RR and priorities

 Feedback scheduling

 What does that mean …

Multi-Level Queue Scheduling

 Have two scheduling policies

 First decides which queue to serve

 E.g. based on queue priorities

 Seconds decides which job within a queue to choose

 E.g. FCFS or RR

Job 1 Job 2 Job 3

Job 4 Job 5

Queue 1

Queue 2

• Highest priority gets one quantum, second

highest gets 2…..

• If highest finishes during quantum, great. Otherwise

bump it to second highest priority and so on into the

night

• Consequently, shortest (high priority) jobs get

out of town first

• They announce themselves-no previous

knowledge assumed!

Multiple Queues with Priority

Scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Feedback Scheduling

 Motivation:

 Want to give priority to shorter jobs

 Want to give priority to IO bound jobs

 Want to give priority to interactive jobs

 Want to …

 But don’t know beforehand whether a job is short or

long and whether it’s IO bound or CPU bound …

Feedback Scheduling

 Adjust criteria for choosing a particular
process based on past history

 Combine with MLQ

 Can prefer processes that do not use full quantum

 Can change priority of processes based on age

 Can change priority of processes based on CPU
consumed so far

 Can boost priority following a user-input event

 Move processes between queues

Linux 2.6 CPU scheduling

 Combination of

 Multilevel queues

 With priorities and RR

 Feedback scheduling

 Distinguishes 3 classes

 Realtime FIFO processes

 Realtime RR processes

 Timesharing processes

 Our discussion focuses on timesharing processes

Linux 2.6 CPU scheduling

Active array
Highest priority

Lowest priority

…

•Always run the task in active array with highest priority

•If there are procs with same priority, do RR between them
•Switch after granularity time units

RR

How do you avoid starvation of low
priority processes?

Linux 2.6 CPU scheduling

Active array

Expired array (timeslice expired)

Highest priority

Lowest priority

…
…

•Always run the task in active array with highest priority

•If there are procs with same priority, do RR between them
•Switch after granularity time units

•If timeslice expires move to “Expired array”

RR

 How to determine priority of process?

 Some processes are more important than others

 Assign static priorities [-20, 19]

 Done through nice system call

 Interactive & IO bound processes should be favored

 Give bonus/penalty on top of static priority

 priority = static_priority + bonus

 How to identify interactive / IO bound processes?

 Maintain sleep_avg (time process is sleeping vs

CPU time)

Linux 2.6 CPU scheduling

Linux 2.6 CPU scheduling

Active array

Expired array (timeslice expired)

Highest priority

Lowest priority

…
…

•Always run the task in active array with highest priority

•If there are procs with same priority, do RR between them
•Switch after granularity time units

•If timeslice expires move to “Expired array”

RR

 How to set timeslice and granularity?

 Timeslice depends on static priority

 Between 5ms and 800ms

 Granularity depends on dynamic priority

 Many of the details keep changing …

Linux 2.6 CPU scheduling

New topic next week:

 Memory management!

