
Operating Systems

Operating Systems

Winter 2018

Sina Meraji

U of T

More Special Instructions

 Swap (or Exchange) instruction

 Operates on two words atomically

 Can also be used to solve critical section problem

 Machine instructions have three problems:

 Busy waiting

Higher-level Abstractions for CS’s

 Locks

 Very primitive, minimal semantics

 Operations: acquire(lock), release(lock)

 Semaphores

 Basic, easy to understand, hard to program with

 Monitors

 High-level, ideally has language support (Java)

 Messages

 Simple model for communication &
synchronization

 Direct application to distributed systems

Producer and Consumer

 Two processes share a bounded buffer

 The producer puts info in buffer

 The consumer takes info out

 Solution

 Sleep: Cause caller to block

 Wakeup: Awaken a process

The producer-consumer

What happens if Cons. wakes up the Prod. before it really sleeps

The Producer-Consumer Problem

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Semaphores

 Semaphores are abstract data types that
provide synchronization. They include:

 An integer variable, accessed only through 2
atomic operations

 The atomic operation wait (also called P or
decrement) - decrement the variable and block
until semaphore is free

 The atomic operation signal (also called V or
increment) - increment the variable, unblock a
waiting a thread if there are any

 A queue of waiting threads

Types of Semaphores

 Mutex (or Binary) Semaphore

 Represents single access to a resource

 Guarantees mutual exclusion to a critical section

 Counting semaphore

 Represents a resource with many units available,
or a resource that allows certain kinds of
unsynchronized concurrent access (e.g., reading)

 Multiple threads can pass the semaphore

 Max number of threads is determined by
semaphore’s initial value, count

 Mutex has count = 1, counting has count = N

Semaphores
 Integer variable count with two atomic

operations

 Operation wait (also called P or decrement)
 block until count > 0 then decrement variable

 Operation signal (also called V or increment)
 increment count, unblock a waiting thread if any

 A queue of waiting threads

wait(semaphore *s) {

while (s->count == 0) ;

s->count -= 1;

}

signal(semaphore *s) {

s->count += 1;

…… //unblock one waiter

}

Using Binary Semaphores
 Use is similar to locks, but semantics are different

typedef struct account {

double balance;

semaphore S;

} account_t;

Withdraw(account_t *acct, amt){

double bal;

wait(acct->S);

bal = acct->balance;

bal = bal - amt;

acct->balance = bal;

signal(acct->S);

return bal;

}

wait(S);

bal = acct->balance;

bal = bal - amt;

wait(acct->S);

acct->balance = bal;

signal(acct->S);

...

signal(acct->S);

Have semaphore, S, associated with acct Three threads execute Withdraw()

wait(acct->S);

...

signal(acct->S);

It is undefined which thread runs after a signal

Atomicity of wait() and signal()

 We must ensure that two threads cannot

execute wait and signal at the same time

 This is another critical section problem!

 Use lower-level primitives

 Uniprocessor: disable interrupts

 Multiprocessor: use hardware instructions

The readers/writers problem

Multiple readers

or …

One writer

Shared object

• An object is shared among several threads

• Some only read the object, others only write it

• We can allow multiple concurrent readers

• But only one writer

•How can we implement this with semaphores?

 Use three variables

 Semaphore w_or_r - exclusive writing or reading

 Think of it as a token that can be held either by the
group of readers or by one individual writer.

 Which thread in the group of readers is in charge of
getting and returning the token?

 “Last to leave the room turns off the light”

Multiple readers

or …

One writer

Shared object

The readers/writers problem

 Use three variables

 Semaphore w_or_r - exclusive writing or reading

 int readcount - number of threads reading object

 Needed to detect when a reader is the first or last of a group.

 Semaphore mutex - control access to readcount

Multiple readers

or …

One writer

Shared object

The readers/writers problem

Writer’s operation:

//number of readers

int readcount = 0;

//mutual exclusion to readcount

Semaphore mutex = 1;

//exclusive writer or reading

Semaphore w_or_r = 1;

Writer {

wait(w_or_r); //lock out others

Write;

signal(w_or_r); //up for grabs

}

Reader’s operation:
Reader {

wait(mutex); //lock readcount

// one more reader

readcount += 1;

// is this the first reader?

if(readcount == 1)

//synch w/ writers

wait(w_or_r);

//unlock readcount

signal(mutex);

Read;

wait(mutex); //lock readcount

readcount -= 1;

if(readcount == 0)

signal(w_or_r);

signal(mutex);

}

•Update read_count

•Am I the first reader? => decrement w_or_r

•Update read_count

•Am I the last reader? => increment w_or_r

Reader’s operation:
Reader {

wait(mutex); //lock readcount

// one more reader

readcount += 1;

// is this the first reader?

if(readcount == 1)

//synch w/ writers

wait(w_or_r);

//unlock readcount

signal(mutex);

Read;

wait(mutex); //lock readcount

readcount -= 1;

if(readcount == 0)

signal(w_or_r);

signal(mutex);

}

•Update read_count

•Am I the first reader? => decrement w_or_r

•Update read_count

•Am I the last reader? => increment w_or_r

Reader’s operation:
Reader {

wait(mutex); //lock readcount

// one more reader

readcount += 1;

// is this the first reader?

if(readcount == 1)

//synch w/ writers

wait(w_or_r);

//unlock readcount

signal(mutex);

Read;

wait(mutex); //lock readcount

readcount -= 1;

if(readcount == 0)

signal(w_or_r);

signal(mutex);

}

•Update read_count

•Am I the first reader? => decrement w_or_r

•Update read_count

•Am I the last reader? => increment w_or_r

Reader’s and writers operation:

//number of readers

int readcount = 0;

//mutual exclusion to readcount

Semaphore mutex = 1;

//exclusive writer or reading

Semaphore w_or_r = 1;

Writer {

wait(w_or_r); //lock out others

Write;

signal(w_or_r); //up for grabs

}

Reader {

wait(mutex); //lock readcount

// one more reader

readcount += 1;

// is this the first reader?

if(readcount == 1)

//synch w/ writers

wait(w_or_r);

//unlock readcount

signal(mutex);

Read;

wait(mutex); //lock readcount

readcount -= 1;

if(readcount == 0)

signal(w_or_r);

signal(mutex);

}

Suppose I’m the first reader
arriving while writer is active. What happens?

Reader’s and writers operation:

//number of readers

int readcount = 0;

//mutual exclusion to readcount

Semaphore mutex = 1;

//exclusive writer or reading

Semaphore w_or_r = 1;

Writer {

wait(w_or_r); //lock out others

Write;

signal(w_or_r); //up for grabs

}

Reader {

wait(mutex); //lock readcount

// one more reader

readcount += 1;

// is this the first reader?

if(readcount == 1)

//synch w/ writers

wait(w_or_r);

//unlock readcount

signal(mutex);

Read;

wait(mutex); //lock readcount

readcount -= 1;

if(readcount == 0)

signal(w_or_r);

signal(mutex);

}

Suppose I’m the second reader
arriving while writer is active. What happens?

Reader’s and writers operation:

//number of readers

int readcount = 0;

//mutual exclusion to readcount

Semaphore mutex = 1;

//exclusive writer or reading

Semaphore w_or_r = 1;

Writer {

wait(w_or_r); //lock out others

Write;

signal(w_or_r); //up for grabs

}

Reader {

wait(mutex); //lock readcount

// one more reader

readcount += 1;

// is this the first reader?

if(readcount == 1)

//synch w/ writers

wait(w_or_r);

//unlock readcount

signal(mutex);

Read;

wait(mutex); //lock readcount

readcount -= 1;

if(readcount == 0)

signal(w_or_r);

signal(mutex);

}

Once the writer exits, which reader gets to go first?

Reader’s and writers operation:

//number of readers

int readcount = 0;

//mutual exclusion to readcount

Semaphore mutex = 1;

//exclusive writer or reading

Semaphore w_or_r = 1;

Writer {

wait(w_or_r); //lock out others

Write;

signal(w_or_r); //up for grabs

}

Reader {

wait(mutex); //lock readcount

// one more reader

readcount += 1;

// is this the first reader?

if(readcount == 1)

//synch w/ writers

wait(w_or_r);

//unlock readcount

signal(mutex);

Read;

wait(mutex); //lock readcount

readcount -= 1;

if(readcount == 0)

signal(w_or_r);

signal(mutex);

}

If both readers and writers are waiting, once the writer
exits, who goes first?

Notes on Readers/Writers

 If there is a writer

 First reader blocks on w_or_r

 All other readers block on mutex

 Once a writer exits, all readers can proceed

 Which reader gets to go first?

 The last reader to exit signals a waiting writer

 If no writer, then readers can continue

 If readers and writers are waiting on w_or_r, and a

writer exits, who goes first?

 Depends on the scheduler

Higher-level Abstractions for CS’s

 Locks

 Very primitive, minimal semantics

 Operations: acquire(lock), release(lock)

 Semaphores

 Basic, easy to understand, hard to program with

 Monitors

 High-level, ideally has language support (Java)

 Messages

 Simple model for communication & synchronization

 Direct application to distributed systems

Motivation for monitors

 It’s easy to make mistakes with semaphores

Writer {

wait(w_or_r);

Write;

wait(w_or_r);

}

Writer {

signal(w_or_r);

Write;

signal(w_or_r);

}

Monitors
 Similar in a sense to an abstract data type (data and

operations on the data) with the restriction that only one
process at a time can be active within the monitor
 Local data accessed only by the monitor’s procedures (not by

any external procedure)

 A process enters the monitor by invoking 1 of its procdures

 Other processes that attempt to enter monitor are blocked

 A process in the monitor may need to wait for something
to happen
 May need to allow another process to use the monitor

 provide a condition type for variables with operations

 wait (suspend the invoking process)

 signal (resume exactly one suspended process)

Monitor Diagram

Local data

Procedure 1

Procedure N

Initialization Code

Enter queue

Exit

 An abstract data type:

with restriction that only

one process at a time

can be active within the

monitor

 Local data accessed only

by monitor’s procedures

 Process enters monitor by

invoking 1 of its procedures

 Other processes that

attempt to enter monitor

are blocked

Bank example with monitors

Local data

Procedure 1

Procedure N

Initialization Code

Enter queue

Exit

Monitor Account {

int balance;

void withdraw(int amount){

balance -= amount;

}

void deposit (int amount){

balance += amount;

}

….

}

Enforcing single access

 A process in the monitor may need to wait for

something to happen

 May need to let other process use the monitor

 Provide a special type of variable called a condition

 Operations on a condition variable are:

 wait (suspend the invoking process)

 signal (resume exactly one suspended process)

▪ if no process is suspended, a signal has no effect

 How does that differ from Semaphore’s wait & signal?

Monitor Diagram

Local data

Condition Vars

Procedure 1

Procedure N

Initialization Code

Enter queue

Exit

Condition 1

Condition m

More on Monitors

 If process P executes an x.signal operation and a
process Q waiting on condition x, we have a problem:
 P is already “in the monitor”, does not need to block

 Q becomes unblocked by the signal, and wants to resume
execution in the monitor

 But both cannot be simultaneously active in the monitor!

Local data

Procedure 1:
If (not ready)

x.wait
…

Condition x

Procedure 2:
ready = true
x.signal

P

Q

Monitor Semantics for Signal

 Hoare monitors

 Signal() immediately switches from the caller to a

waiting thread

 Need another queue for the signaler, if signaler was not

done using the monitor

 Brinch Hansen

 Signaler must exit monitor immediately

 i.e. signal() is always the last statement in monitor

procedure

 Mesa monitors

 Signal() places a waiter on the ready queue, but

signaler continues inside monitor

The readers/writers problem

Multiple readers

or …

One writer

Shared object

• An object is shared among several threads

• Some only read the object, others only write it

• We can allow multiple concurrent readers

• But only one writer

•How can we implement this with monitors?

Monitor for readers/writers

Local data

Condition Vars

Procedure 1

Procedure N

Initialization Code

Enter queue

Exit

Condition 1

Condition m

Using Monitors in C

 Not integrated with the language (as in Java)

 Bounded buffer: Want a monitor to control access to a

buffer of limited size, N

 Producers add to the buffer if it is not full

 Consumers remove from the buffer if it is not empty

 Need two functions – add_to_buffer() and

remove_from_buffer()

 Need one lock – only lock holder is allowed to be active

in one of the monitor’s functions

 Need two conditions – one to make producers wait, one

to make consumers wait

Bounded Buffer Monitor – Variables

#define N 100

typedef struct buf_s {

int data[N];

int inpos; /* producer inserts here */

int outpos; /* consumer removes from here */

int numelements; /* # items in buffer */

} buf_t;

buf_t buf; //Do proper initialization

void add_to_buff(int value);

int remove_from_buff();

Bounded Buffer: The Producer thread

(no synchronization)

void add_to_buf(int value) {

while (buf.nelements == N) {

/* buffer is full, wait */

/* implement wait here */

}

buf.data[buf.inpos] = value;

buf.inpos = (buf.inpos + 1) % N;

buf.nelements++;

/* Make sure that potentially */

/* waiting consumers are notified */

}

int remove_from_buf() {

int val;

while (buf.nelements == 0) {

/* buffer is empty, wait */

/* implement wait here */

}

val = buf.data[buf.outpos];

buf.outpos = (buf.outpos + 1) % N;

buf.nelements--;

/* Make sure that potentially */

/* waiting producers are notified */

return val;

}

Bounded Buffer: The Consumer

thread (no synchronization)

Solution in pthreads….

void add_to_buf(int value) {

pthread_mutex_lock(buf.mylock);

while (buf.nelements == N) {

/* buffer is full, wait */

pthread_cond_wait(

buf.notFull, buf.mylock);

}

buf.data[buf.inpos] = value;

buf.inpos = (buf.inpos + 1)%N;

buf.nelements++;

pthread_cond_signal(

buf.notEmpty);

pthread_mutex_release(

buf.mylock);

}

int remove_from_buf() {

int val;

pthread_mutex_lock(buf.mylock);

while (buf.nelements == 0) {

/* buffer is empty, wait */

pthread_cond_wait(buf.notEmpty,

buf.mylock);

}

val = buf.data[buf.outpos];

buf.outpos = (buf.outpos + 1)%N;

buf.nelements—;

pthread_cond_signal(buf.notFull);

pthread_mutex_release(buf.mylock);

return val;

}

Next: Process Scheduling

State Queues

PCB1 PCB3 PCB8
head

PCB4

Ready

Queue

Sleep

Queue

.

.

.

PCB2
head

• There may be many wait queues,
one for each type of wait (disk,
console, timer, network, etc.)

Disk I/O

Queue

Process Scheduling

 Only one process can run at a time on a CPU

 Scheduler decides which process to run

 Goal of CPU scheduling:

 Give illusion that processes are running concurrently

 Maximize CPU utilization

 Will talk about CPU scheduling in more detail …

What happens on

dispatch/context switch?

 Switch the CPU to another process

 Save currently running process state

 Unless the current process is exiting

 Select next process from ready queue

 Restore state of next process

 Restore registers

 Switch to user mode

 Set PC to next instruction in this process

Process Life Cycle

 Processes repeatedly alternate between
computation and I/O

 Called CPU bursts and I/O bursts

 Last CPU burst ends with a call to terminate the
process (_exit() or equivalent)

 CPU-bound: very long CPU bursts, infrequent I/O
bursts

 I/O-bound: short CPU bursts, frequent (long) I/O
bursts

 During I/O bursts, CPU is not needed

 Opportunity to execute another process!

Bursts of CPU usage alternate with periods of waiting for I/O. (a) A

CPU-bound process. (b) An I/O-bound process.

Scheduling – Process Behavior

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

What is processor scheduling?

 The allocation of processors to processes

over time

 This is the key to multiprogramming
 We want to increase CPU utilization and job throughput

by overlapping I/O and computation

 Mechanisms:

▪ process states, process queues

What is processor scheduling?

 The allocation of processors to processes

over time

 This is the key to multiprogramming
 We want to increase CPU utilization and job throughput

by overlapping I/O and computation

 Mechanisms:

▪ Process states, Process queues

 Policies:

▪ Given more than one runnable process, how do we choose

which to run next?

▪ When do we make this decision?

When to schedule?

New Ready Running Terminated

Blocked

Admit
Dispatch

Time-out

Event
Wait

Event
Occurs

Exit

 When the running process blocks (or exits)

 Operating system calls (e.g., I/O)

 At fixed intervals

 Clock interrupts

 When a process enters Ready state

 I/O interrupts, signals, process creation

Scheduling Goals

 All systems

 Fairness - each process receives fair share of CPU

 Avoid starvation

 Policy enforcement - usage policies should be met

 Balance - all parts of the system should be busy

 Batch systems

 Throughput - maximize jobs completed per hour

 Turnaround time - minimize time between
submission and completion

 CPU utilization - keep the CPU busy all the time

More Goals

 Interactive Systems

 Response time - minimize time between

receiving request and starting to produce output

 Proportionality - “simple” tasks complete quickly

 Real-time systems

 Meet deadlines

 Predictability

 Goals sometimes conflict with each other!

Types of Scheduling

 Non-preemptive scheduling

 once the CPU has been allocated to a process, it

keeps the CPU until it terminates

 Suitable for batch scheduling

 Preemptive scheduling

 CPU can be taken from a running process and

allocated to another

 Needed in interactive or real-time systems

Next week

 More on Scheduling

