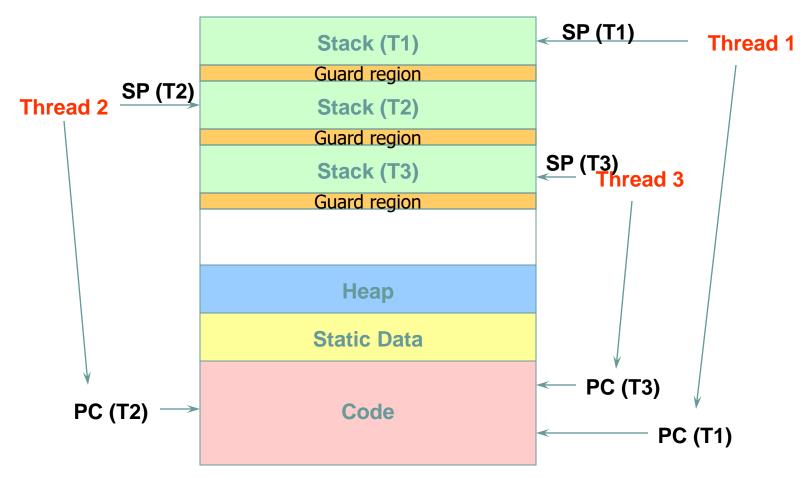

Operating Systems

Sina Meraji U of T

Announcement


- Check discussion board for announcements
- A1 is posted

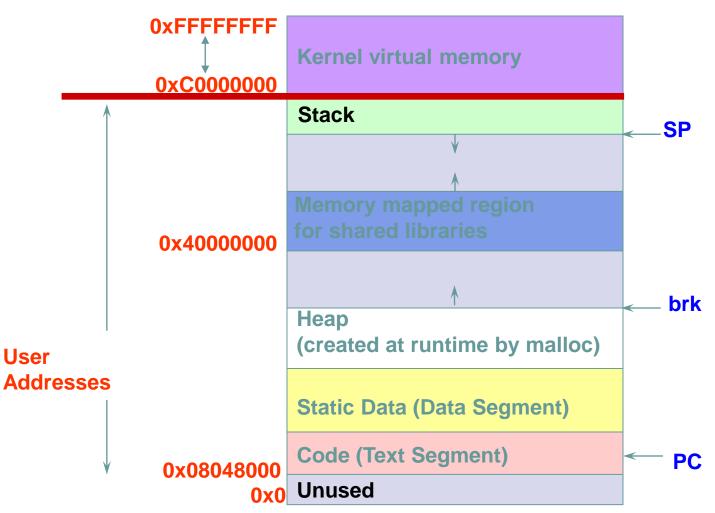
Recap: Process Creation: Unix

- In Unix, processes are created using fork()
 int fork()
- fork()
 - Creates a new address space
 - Initializes the address space with a copy of the entire contents of the address space of the parent
 - Initializes the kernel resources to point to the resources used by parent (e.g., open files)

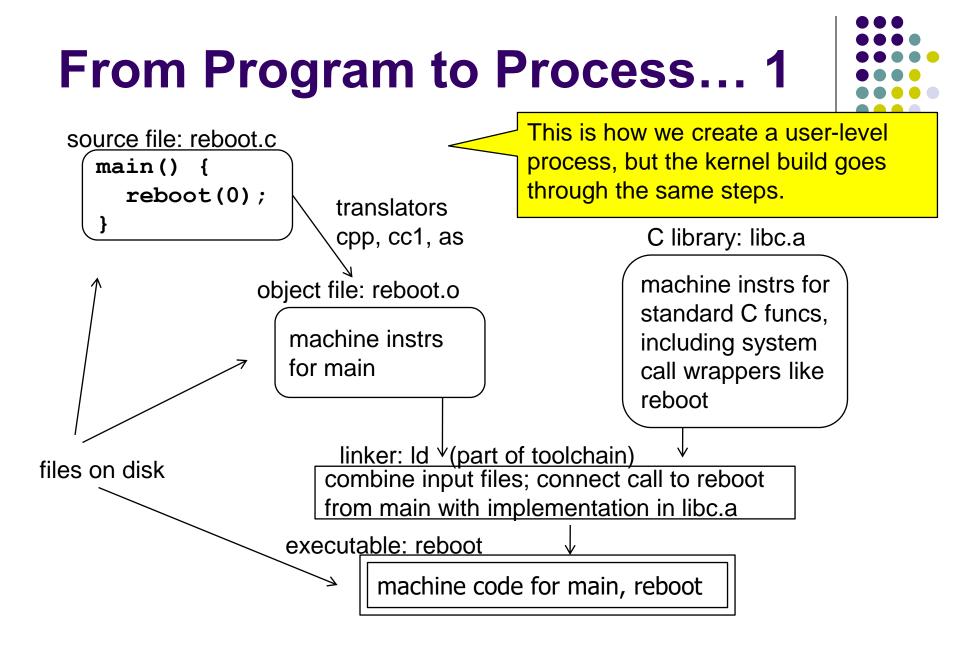
Recap: Threads

TODAY:

- System Calls
- Intro to Synchronization


Bootstrapping

- Dry
- Hardware stores small program in non-volatile memory
 - BIOS Basic Input Output System
 - Knows how to access simple hardware devices
 - Disk, keyboard, display
- When power is first supplied, this program executes
- What does it do?
 - Checks that RAM, keyboard, and basic devices are installed and functioning correctly
 - Scans buses to detect attached devices and configures new ones
 - Determines boot device (tries list of devices in order)
 - Reads first sector from boot device and executes it (bootloader)
 - Bootloader reads partition table, finds active partition, reads secondary bootloader
 - Secondary bootloader reads OS into memory and executes it


Operating System Startup

- Machine starts in system mode, so kernel code can execute immediately
- OS initialization:
 - Initialize internal data structures
 - Machine dependent operations are typically done first
 - Create first process
 - Switch mode to user and start running first process
 - Wait for something to happen
 - OS is entirely driven by external events

Memory Layout (Linux, x86)

CSC369

Unix Shells

while (1) $\{$

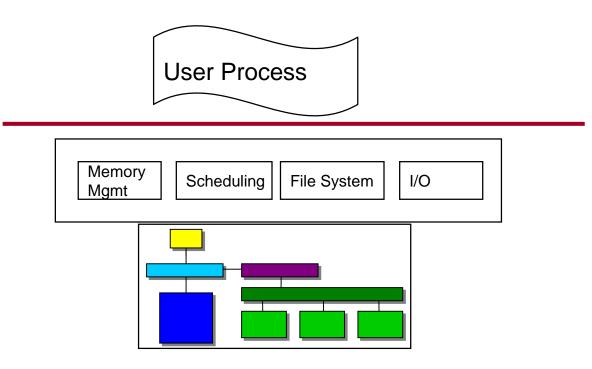
- char *cmd = read_command();
- int child_pid = fork();
- if (child_pid == 0) {

exec(cmd); //cmd=executable name(reboot)

} else {

}

```
wait(child_pid);
```


Process Creation: Unix (2)

- Wait a sec ... How do we actually start a new program?
 int exec(char *prog, char *argv[])
- exec()
 - Stops the current process
 - Loads the program "prog" into the process' address space
 - Initializes hardware context and args for the new program
 - Places the PCB onto the ready queue
 - Note: It **does not** create a new process

Requesting OS Services

- Operating System and user programs are isolated from each other
- But OS provides service to user programs...
- So, how do they communicate?

Boundary Crossings

- Getting to kernel mode
 - Boot time (not really a crossing, starts in kernel)
 - Explicit system call request for service by application
 - Hardware interrupt
 - Software trap or exception
 - Hardware has table of "Interrupt service routines"
- Kernel to user
 - Jumps to next application instruction

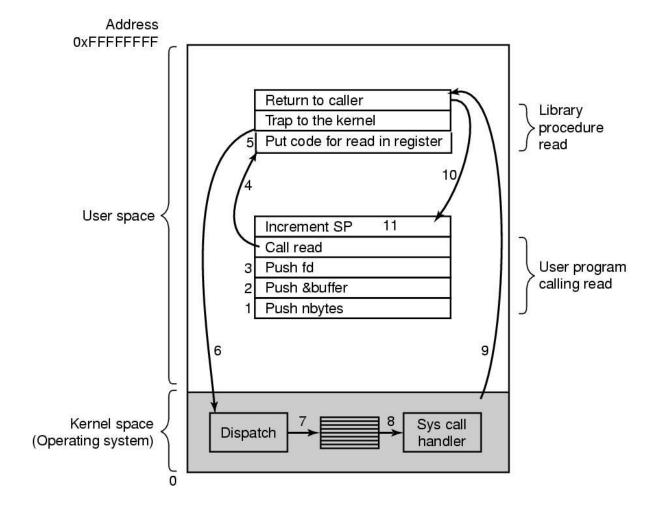
System Calls for Process Management

Process management

Call	Description
pid = fork()	Create a child process identical to the parent
pid = waitpid(pid, &statloc, options)	Wait for a child to terminate
s = execve(name, argv, environp)	Replace a process' core image
exit(status)	Terminate process execution and return status

Some of the major system calls.

System Calls for File Management



File management

Call	Description
fd = open(file, how,)	Open a file for reading, writing, or both
s = close(fd)	Close an open file
n = read(fd, buffer, nbytes)	Read data from a file into a buffer
n = write(fd, buffer, nbytes)	Write data from a buffer into a file
position = lseek(fd, offset, whence)	Move the file pointer
s = stat(name, &buf)	Get a file's status information

Some of the major system calls.

System Calls

Read(fd, buffer, nbytes).

System Call Interface

- User program calls C library function with arguments⁺
- C library function arranges to pass arguments to OS, including a system call identifier
- Executes special instruction to trap to system mode
 - Interrupt/trap vector transfers control to a system call handling routine
- Syscall handler figures out which system call is needed and calls a routine for that operation
- How does this differ from a normal C language function call? Why is it done this way?
 - Extra level of indirection through system call handler, rather than direct control flow to called function
 - Hardware support is needed to enforce separation of userspace and kernel

System Call Operation

- Kernel must verify arguments that it is passed
 - Why?
- A fixed number of arguments can be passed in registers
 - Often pass the address of a user buffer containing data (e.g., for write())
 - Kernel must copy data from user space into its own buffers
- Result of system call is returned in register

Intro to Synchronization

Cooperating Processes

- A process is *independent* if it cannot affect or be affected by the other processes executing in the system
- No data sharing \Rightarrow process is independent
- A process is cooperating if it is not independent
- Cooperating processes must be able to communicate with each other and to synchronize their actions

Interprocess Communication

- Cooperating processes need to exchange information, using either
 - Shared memory (e.g. fork())
 - Message passing
- Message passing models
 - Send(P, msg) send msg to process P
 - Receive(Q, msg) receive msg from process Q

Motivating Example

 Suppose we write functions to handle withdrawals and deposits to a bank account:

```
Withdraw(acct, amt) {
    balance = get_balance(acct);
    balance = balance - amt;
    put_balance(acct,balance);
    return balance;
}
```

```
Deposit(account, amount) {
    balance = get_balance(acct);
    balance = balance + amt;
    put_balance(acct,balance);
    return balance;
}
```

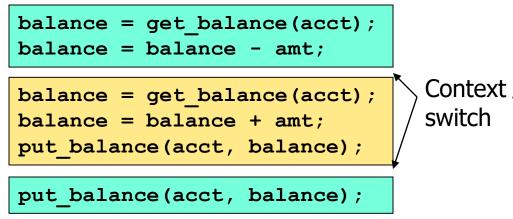
- Idea: Create separate threads for each action, which may run at the bank's central server
- What's wrong with this implementation?
 - Think about potential schedules for these two threads

Motivating Example

 Suppose we write functions to handle withdrawals and deposits to a bank account:

```
Withdraw(acct, amt) {
    balance = get_balance(acct);
    balance = balance - amt;
    put_balance(acct,balance);
    return balance;
}
```

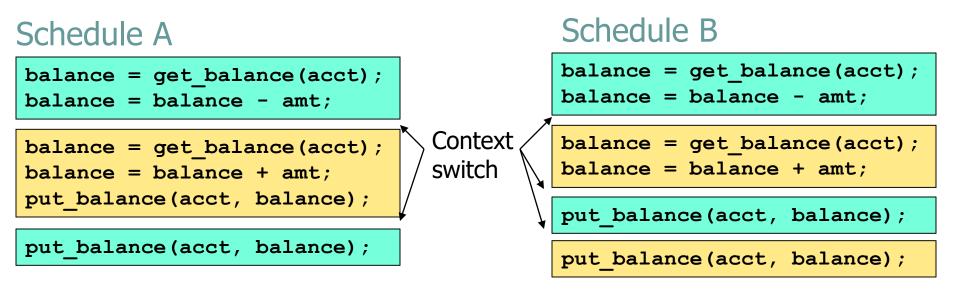
```
Deposit(account, amount) {
    balance = get_balance(acct);
    balance = balance + amt;
    put_balance(acct,balance);
    return balance;
}
```


- Suppose you share this account with someone and the balance is \$1000
- You each go to separate ATM machines you withdraw \$100 and your S.O. deposits \$100

Interleaved Schedules

The problem is that the execution of the two
 processes can be interleaved:

Schedule A



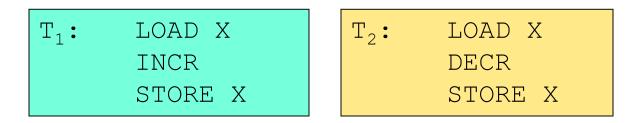
- What is the account balance now?
- Is the bank happy with our implementation?
 - Are you?

Interleaved Schedules

The problem is that the execution of the two
 processes can be interleaved:

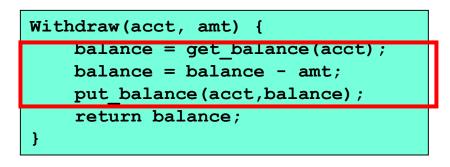
- What is the account balance now?
- Is the bank happy with our implementation?
 - Are you?

What Went Wrong



- Two concurrent threads manipulated a shared resource (the account) without any synchronization
 - Outcome depends on the order in which accesses take place
 - This is called a *race condition*
- We need to ensure that only one thread at a time can manipulate the shared resource
 - So that we can reason about program behavior
 - → We need synchronization

Example continued ...


- Could the same problem occur with a simple shared variable:
 - T_1 and T_2 share variable X
 - T_1 increments X (X := X+1)
 - T_2 decrements X (X := X-1)
 - At the machine level, we have:

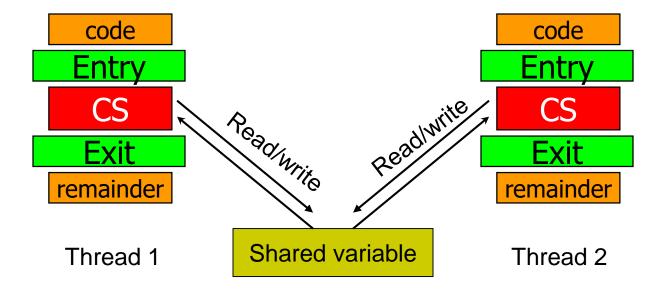
• Same problem of interleaving can occur!

Mutual Exclusion

- Given:
 - A set of *n* threads, T_0, T_1, \dots, T_n
 - A set of resources shared between threads
 - A segment of code which accesses the shared resources, called the *critical section*, CS

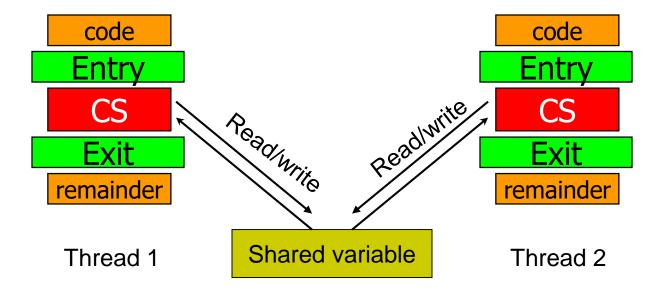
- We want to ensure that:
 - Only one thread at a time can execute in the critical section
 - All other threads are forced to wait on entry
 - When a thread leaves the CS, another can enter

32


Aside: What program data is shared between threads?

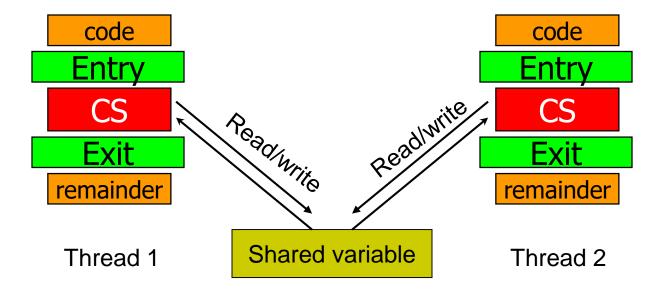
- Local variables are not shared (private)
 - Each thread has its own stack
 - Local vars are allocated on this private stack
- Global variables and static objects are shared
 - Stored in the static data segment, accessible by any thread
- Dynamic objects and other heap objs are shared
 - Allocated from heap with malloc/free or new/delete

The Critical Section Problem


• Design a protocol that threads can use to cooperate

- Each thread must request permission to enter its CS, in its *entry* section
- CS may be followed by an *exit* section
- Remaining code is the *remainder* section

Critical Section Requirements (1)


• Design a protocol that threads can use to cooperate

- 1) Mutual Exclusion
 - If one thread is in the CS, then no other is

Critical Section Requirements (2)

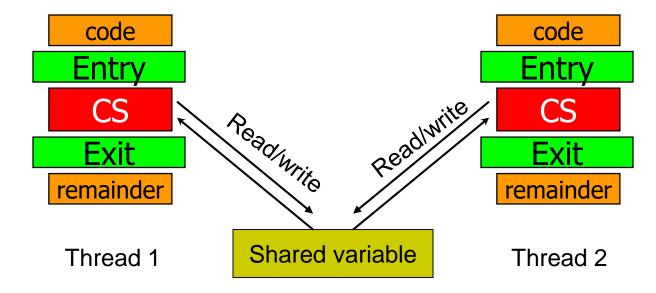
• Design a protocol that threads can use to cooperate

2) Progress

 If no thread is in the CS, and some threads want to enter CS, it should be able to enter in definite time

Critical Section Requirements (3)

• Design a protocol that threads can use to cooperate



3) Bounded waiting (no starvation)

 If some thread T is waiting on the CS, then there is a limit on the number of times other threads can enter CS before this thread is granted access

Critical Section Requirements (4)

• Design a protocol that threads can use to cooperate

4) Performance

• The overhead of entering and exiting the CS is small with respect to the work being done within it

Critical Section Requirements

- 1) Mutual Exclusion
 - If one thread is in the CS, then no other is
- 2) Progress
 - If no thread is in the CS, and some threads want to enter CS, it should be able to enter in definite time
- 3) Bounded waiting (no starvation)
 - If some thread T is waiting on the CS, then there is a limit on the number of times other threads can enter CS before this thread is granted access
- Performance
 - The overhead of entering and exiting the CS is small with respect to the work being done within it

Some Assumptions & Notation

- Assume no special hardware instructions, no restrictions on the # of processors (for now)
- Assume that basic machine language instructions (LOAD, STORE, etc.) are *atomic:*
 - If two such instructions are executed concurrently, the result is equivalent to their sequential execution in some unknown order
- If only two threads, we number them T_0 and T_1
 - Use T_i to refer to one thread, T_j for the other (j=1-i) when the exact numbering doesn't matter
- Let's look at one solution...

2-Thread Solutions: 1st Try

- Let the threads share an integer variable *turn* initialized to 0 (or 1)
- If *turn=i*, thread T_i is allowed into its CS

```
My work(id t id) { /* id t can be 0 or 1 */
       while (turn != id) ;/* entry section */
       /* critical section, access protected resource *,
       turn = 1 - id;
                               exit section */
                               remainder section */
       . . .
}
```

Only one thread at a time can be in its CS Progress is not satisfied

 Requires strict alternation of threads in their CS: if turn=0, T_1 may not enter, even if T_0 is in the code section

2-Thread Solutions: 2nd Try

- First attempt does not have enough info about state of each process. It only remembers which process is allowed to enter its CS
- Replace turn with a shared flag for each thread
 - **boolean** flag[2] = {false, false}
 - Each thread may update its own flag, and read the other thread's flag
 - If flag[i] is true, T_i is ready to enter its CS

A Closer Look at 2nd Attempt

```
My_work(id_t id) { /* id can be 0 or 1 */
...
while (flag[1-id]) ;/* entry section */
flag[id] = true; /* indicate entering CS */
/* critical section, access protected resource */
flag[id] = false; /* exit section */
...
}
```

- Mutual exclusion is not guaranteed
 - Each thread executes while statement, finds flag set to false
 - Each thread sets own *flag* to *true* and enters CS
- Can't fix this by changing order of testing and setting *flag* variables (leads to *deadlock*)

2-Thread Solutions: 3rd Try

- Combine key ideas of first two attempts for a correct solution
- The threads share the variables *turn* and *flag* (where *flag* is an array, as before)

```
Enter_region(id_t id) { /* id can be 0 or 1 */
    flag[id] = true; /* indicate entering CS */
    turn = id;
    while (turn == id && flag[other] == true);
}
```

```
Leave_region(id_t id) { /* id can be 0 or 1 */
flag[id] = false;
```

2-Thread Solutions: 3rd Try

Imagine two threads i and j execute
 Enter_region() at the same time:

Thread i

Thread j

```
flag[i] = true;
turn = i;
while(turn==i && flag[j]==true);
while(turn==j && flag[i]==true);
flag[j] = true;
```

- Basic idea: if both try to enter at the same time, turn will be set to both 0 and 1 at roughly the same time. Only one assignments will last. The final value of turn decides who gets to go first.
- This is the basis of *Peterson's Algorithm*

Peterson's Solution

```
#define FALSE 0
#define TRUE
#define N
                2
                                          /* number of processes */
                                          /* whose turn is it? */
int turn;
int interested[N];
                                          /* all values initially 0 (FALSE) */
void enter_region(int process);
                                          /* process is 0 or 1 */
     int other:
                                          /* number of the other process */
     other = 1 - \text{process};
                                          /* the opposite of process */
     interested[process] = TRUE;
                                          /* show that you are interested */
     turn = process;
                                          /* set flag */
     while (turn == process && interested[other] == TRUE) /* null statement */;
}
void leave_region(int process)
                                          /* process: who is leaving */
     interested[process] = FALSE;
                                          /* indicate departure from critical region */
```

Peterson's solution for achieving mutual exclusion.

Higher-level Abstractions for CS's

- Locks
 - Very primitive, minimal semantics
- Semaphores
 - Basic, easy to understand, hard to program with
- Monitors
 - High-level, ideally has language support (Java)
- Messages
 - Simple model for communication & synchronization
 - Direct application to distributed systems

Synchronization Hardware

- To build these higher-level abstractions, it is useful to have some help from the hardware
- On a uniprocessor:
 - Disable interrupts before entering critical section
 - Prevents context switches
 - Doesn't work on multiprocessor
- Need some special atomic instructions

Atomic Instructions: Test-and-Set Lock (TSL)

- Test-and-set uses a lock variable
 - Lock == 0 => nobody is using the lock
 - Lock == 1 => lock is in use
 - In order to acquire lock, must change it's value from 0=>1

```
boolean test_and_set(boolean *lock)
{
    boolean old = *lock;
    *lock = True;
    return old;
}
```

• Hardware executes this atomically!

Atomic Instructions: Test-and-Set

- The semantics of test-and-set are:
 - Record the old value of the variable
 - Set the variable to some non-zero value
 - Return the old value

```
boolean test_and_set(boolean *lock)
{
    boolean old = *lock;
    *lock = True;
    return old;
}
```

- lock is always True on exit from test-and-set
 - Either it was True (locked) already, and nothing changed
 - or it was False (available), but the caller now holds it
- Return value is either True if it was locked already, or False if $_{50}$ it was previously available

A Lock Implementation

 There are two operations on locks: acquire() and release()

```
boolean lock;
void acquire(boolean *lock) {
    while(test_and_set(lock));
}
void release(boolean *lock) {
    *lock = false;
}
```

- This is a *spinlock*
 - Uses busy waiting thread continually executes while loop in acquire(), consumes CPU cycles

Using Locks

Function Definitions

```
Withdraw(acct, amt) {
```

```
acquire(lock);
```

balance = get_balance(acct); balance = balance - amt; put_balance(acct,balance); release(lock); return balance;

Deposit(account, amount) {

acquire(lock);

balance = get_balance(acct); balance = balance + amt; put_balance(acct,balance); release(lock); return balance;

acquire(lock); balance = get_balance(acct); balance = balance - amt;

acquire(lock);

put_balance(acct, balance);
release(lock);

```
balance = get_balance(acct);
balance = balance + amt;
put_balance(acct, balance);
release(lock);
```


Next Week

• More on Synchronization

Announcement

- Check course website regularly
- Attend Tutorials