
Operating Systems

Sina Meraji

U of T

1

Announcement

 Check discussion board for announcements

 A1 is posted

2

Recap:

Process Creation: Unix
 In Unix, processes are created using fork()

int fork()

 fork()
 Creates a new address space

 Initializes the address space with a copy of the entire
contents of the address space of the parent

 Initializes the kernel resources to point to the resources
used by parent (e.g., open files)

3

Recap: Threads

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Guard region

Guard region

Guard region

SP (T3)

SP (T1)

SP (T2)

4

TODAY:

 System Calls

 Intro to Synchronization

5

Bootstrapping

 Hardware stores small program in non-volatile memory

 BIOS – Basic Input Output System

 Knows how to access simple hardware devices

 Disk, keyboard, display

 When power is first supplied, this program executes

 What does it do?
 Checks that RAM, keyboard, and basic devices are installed and

functioning correctly

 Scans buses to detect attached devices and configures new ones

 Determines boot device (tries list of devices in order)

 Reads first sector from boot device and executes it (bootloader)

 Bootloader reads partition table, finds active partition, reads secondary

bootloader

 Secondary bootloader reads OS into memory and executes it

6

Operating System Startup

 Machine starts in system mode, so kernel
code can execute immediately

 OS initialization:

 Initialize internal data structures

 Machine dependent operations are typically done
first

 Create first process

 Switch mode to user and start running first
process

 Wait for something to happen

 OS is entirely driven by external events

7

Memory Layout (Linux, x86)

10

0x08048000

Stack

0x40000000

Code (Text Segment)

Static Data (Data Segment)

Heap

(created at runtime by malloc)
User

Addresses

SP

PC

Kernel virtual memory

0xC0000000

0xFFFFFFFF

Memory mapped region

for shared libraries

Unused0x0

brk

From Program to Process… 1

main() {

reboot(0);

}

source file: reboot.c

object file: reboot.o

machine instrs

for main

translators

cpp, cc1, as

machine instrs for

standard C funcs,

including system

call wrappers like

reboot

C library: libc.a

machine code for main, reboot

executable: reboot

combine input files; connect call to reboot

from main with implementation in libc.a

linker: ld (part of toolchain)
files on disk

CSC369 12

This is how we create a user-level

process, but the kernel build goes

through the same steps.

Unix Shells

while (1) {

char *cmd = read_command();

int child_pid = fork();

if (child_pid == 0) {

exec(cmd); //cmd=executable name(reboot)

} else {

wait(child_pid);

}

}

Process Creation: Unix (2)

 Wait a sec ... How do we actually start a new program?
int exec(char *prog, char *argv[])

 exec()

 Stops the current process

 Loads the program “prog” into the process’ address space

 Initializes hardware context and args for the new program

 Places the PCB onto the ready queue

 Note: It does not create a new process

Requesting OS Services
 Operating System and user programs are isolated

from each other

 But OS provides service to user programs…

 So, how do they communicate?

15

Memory

Mgmt
Scheduling File System I/O

User Process

Boundary Crossings

 Getting to kernel mode
 Boot time (not really a crossing, starts in kernel)

 Explicit system call – request for service by
application

 Hardware interrupt

 Software trap or exception

 Hardware has table of “Interrupt service routines”

 Kernel to user
 Jumps to next application instruction

16

Some of the major system calls.

System Calls for Process

Management

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

17

Some of the major system calls.

System Calls for File

Management

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

18

Read(fd, buffer, nbytes).

System Calls

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

19

System Call Interface

 User program calls C library function with arguments

 C library function arranges to pass arguments to OS,

including a system call identifier

 Executes special instruction to trap to system mode

 Interrupt/trap vector transfers control to a system call

handling routine

 Syscall handler figures out which system call is

needed and calls a routine for that operation

 How does this differ from a normal C language

function call? Why is it done this way?

 Extra level of indirection through system call handler, rather

than direct control flow to called function

 Hardware support is needed to enforce separation of

userspace and kernel
20

System Call Operation

 Kernel must verify arguments that it is

passed

 Why?

 A fixed number of arguments can be

passed in registers

 Often pass the address of a user buffer

containing data (e.g., for write())

 Kernel must copy data from user space into its

own buffers

 Result of system call is returned in register

21

Intro to Synchronization

23

Cooperating Processes

 A process is independent if it cannot affect or
be affected by the other processes executing
in the system

 No data sharing process is independent

 A process is cooperating if it is not
independent

 Cooperating processes must be able to
communicate with each other and to
synchronize their actions

24

Interprocess Communication

 Cooperating processes need to exchange information,

using either

 Shared memory (e.g. fork())

 Message passing

 Message passing models

 Send(P, msg) – send msg to process P

 Receive(Q, msg) – receive msg from process Q

25

Motivating Example

 Suppose we write functions to handle

withdrawals and deposits to a bank account:

Withdraw(acct, amt) {

balance = get_balance(acct);

balance = balance - amt;

put_balance(acct,balance);

return balance;

}

Deposit(acct, amt) {

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct,balance);

return balance;

}

Withdraw(acct, amt) {

balance = get_balance(acct);

balance = balance - amt;

put_balance(acct,balance);

return balance;

}

Deposit(account, amount) {

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct,balance);

return balance;

}

 Idea: Create separate threads for each action,
which may run at the bank’s central server

• What’s wrong with this implementation?
• Think about potential schedules for these two threads26

 Suppose we write functions to handle

withdrawals and deposits to a bank account:

Withdraw(acct, amt) {

balance = get_balance(acct);

balance = balance - amt;

put_balance(acct,balance);

return balance;

}

Deposit(acct, amt) {

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct,balance);

return balance;

}

Withdraw(acct, amt) {

balance = get_balance(acct);

balance = balance - amt;

put_balance(acct,balance);

return balance;

}

Deposit(account, amount) {

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct,balance);

return balance;

}

• Suppose you share this account with someone
and the balance is $1000

• You each go to separate ATM machines - you
withdraw $100 and your S.O. deposits $100

Motivating Example

27

Interleaved Schedules

 The problem is that the execution of the two

processes can be interleaved:

• What is the account balance now?

• Is the bank happy with our implementation?

• Are you?

balance = get_balance(acct);

balance = balance - amt;

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct, balance);

put_balance(acct, balance);

balance = get_balance(acct);

balance = balance - amt;

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct, balance);

put_balance(acct, balance);

Context
switch

Schedule A Schedule B

28

Interleaved Schedules

 The problem is that the execution of the two

processes can be interleaved:

• What is the account balance now?

• Is the bank happy with our implementation?

• Are you?

balance = get_balance(acct);

balance = balance - amt;

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct, balance);

put_balance(acct, balance);

balance = get_balance(acct);

balance = balance - amt;

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct, balance);

put_balance(acct, balance);

Context
switch

Schedule A Schedule B

29

What Went Wrong

 Two concurrent threads manipulated a

shared resource (the account) without any

synchronization

 Outcome depends on the order in which accesses

take place

 This is called a race condition

 We need to ensure that only one thread at a

time can manipulate the shared resource

 So that we can reason about program behavior

 We need synchronization
30

Example continued …

 Could the same problem occur with a simple shared

variable:

 T1 and T2 share variable X

 T1 increments X (X := X+1)

 T2 decrements X (X := X-1)

 At the machine level, we have:

 Same problem of interleaving can occur!

T1: LOAD X

INCR

STORE X

T2: LOAD X

DECR

STORE X

31

Mutual Exclusion
 Given:

 A set of n threads, T0, T1, …, Tn

 A set of resources shared between threads

 A segment of code which accesses the shared

resources, called the critical section, CS

 We want to ensure that:

 Only one thread at a time can execute in the

critical section

 All other threads are forced to wait on entry

 When a thread leaves the CS, another can enter

Withdraw(acct, amt) {

balance = get_balance(acct);

balance = balance - amt;

put_balance(acct,balance);

return balance;

}

CS

32

Aside: What program data is

shared between threads?

 Local variables are not shared (private)

 Each thread has its own stack

 Local vars are allocated on this private stack

 Global variables and static objects are shared

 Stored in the static data segment, accessible by any

thread

 Dynamic objects and other heap objs are shared

 Allocated from heap with malloc/free or new/delete

33

The Critical Section Problem

 Design a protocol that threads can use to cooperate

CS

Entry

Exit
remainder

code

CS

Entry

Exit
remainder

code

Thread 1 Thread 2Shared variable

 Each thread must request permission to enter its

CS, in its entry section

 CS may be followed by an exit section

 Remaining code is the remainder section
34

Critical Section Requirements (1)

 Design a protocol that threads can use to cooperate

CS

Entry

Exit
remainder

code

CS

Entry

Exit
remainder

code

Thread 1 Thread 2Shared variable

1) Mutual Exclusion

 If one thread is in the CS, then no other is

35

Critical Section Requirements (2)

 Design a protocol that threads can use to cooperate

CS

Entry

Exit
remainder

code

CS

Entry

Exit
remainder

code

Thread 1 Thread 2Shared variable

2) Progress

 If no thread is in the CS, and some threads want to enter

CS, it should be able to enter in definite time

36

Critical Section Requirements (3)

 Design a protocol that threads can use to cooperate

CS

Entry

Exit
remainder

code

CS

Entry

Exit
remainder

code

Thread 1 Thread 2Shared variable

3) Bounded waiting (no starvation)

 If some thread T is waiting on the CS, then there is a limit

on the number of times other threads can enter CS before

this thread is granted access
37

Critical Section Requirements (4)

 Design a protocol that threads can use to cooperate

CS

Entry

Exit
remainder

code

CS

Entry

Exit
remainder

code

Thread 1 Thread 2Shared variable

4) Performance

 The overhead of entering and exiting the CS is small with

respect to the work being done within it

38

Critical Section Requirements

1) Mutual Exclusion
 If one thread is in the CS, then no other is

2) Progress
 If no thread is in the CS, and some threads want to enter

CS, it should be able to enter in definite time

3) Bounded waiting (no starvation)
 If some thread T is waiting on the CS, then there is a limit

on the number of times other threads can enter CS
before this thread is granted access

 Performance
 The overhead of entering and exiting the CS is small with

respect to the work being done within it

39

Some Assumptions & Notation

 Assume no special hardware instructions, no

restrictions on the # of processors (for now)

 Assume that basic machine language

instructions (LOAD, STORE, etc.) are atomic:

 If two such instructions are executed concurrently, the

result is equivalent to their sequential execution in

some unknown order

 If only two threads, we number them T0 and T1

 Use Ti to refer to one thread, Tj for the other (j=1-i)

when the exact numbering doesn’t matter

 Let’s look at one solution…

40

2-Thread Solutions: 1st Try
 Let the threads share an integer variable turn

initialized to 0 (or 1)

 If turn=i , thread Ti is allowed into its CS

My_work(id_t id) { /* id_t can be 0 or 1 */

...

while (turn != id) ;/* entry section */

/* critical section, access protected resource */

turn = 1 - id; /* exit section */

... /* remainder section */

}

✓Only one thread at a time can be in its CS
 Progress is not satisfied

 Requires strict alternation of threads in their CS: if turn=0,
T1 may not enter, even if T0 is in the code section

41

2-Thread Solutions: 2nd Try

 First attempt does not have enough info about

state of each process. It only remembers

which process is allowed to enter its CS

 Replace turn with a shared flag for each thread

 boolean flag[2] = {false, false}

 Each thread may update its own flag, and read the

other thread’s flag

 If flag[i] is true, Ti is ready to enter its CS

42

A Closer Look at 2nd Attempt

 Mutual exclusion is not guaranteed

 Each thread executes while statement, finds flag
set to false

 Each thread sets own flag to true and enters CS

 Can’t fix this by changing order of testing and
setting flag variables (leads to deadlock)

My_work(id_t id) { /* id can be 0 or 1 */

...

while (flag[1-id]) ;/* entry section */

flag[id] = true; /* indicate entering CS */

/* critical section, access protected resource */

flag[id] = false; /* exit section */

... /* remainder section */

}

43

2-Thread Solutions: 3rd Try

 Combine key ideas of first two attempts for a

correct solution

 The threads share the variables turn and flag

(where flag is an array, as before)

Enter_region(id_t id) { /* id can be 0 or 1 */

flag[id] = true; /* indicate entering CS */

turn = id;

while (turn == id && flag[other] == true);

}

Leave_region(id_t id) { /* id can be 0 or 1 */

flag[id] = false;

}
44

2-Thread Solutions: 3rd Try
 Imagine two threads i and j execute
Enter_region() at the same time:

flag[i] = true;

turn = i;

while(turn==i && flag[j]==true);

Thread i

flag[j] = true;

turn = j;

while(turn==j && flag[i]==true);

Thread j

 Basic idea: if both try to enter at the same time,

turn will be set to both 0 and 1 at roughly the same

time. Only one assignments will last. The final value

of turn decides who gets to go first.

 This is the basis of Peterson’s Algorithm
45

Peterson’s solution for achieving mutual exclusion.

Peterson's Solution

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

46

Higher-level Abstractions for CS’s

 Locks

 Very primitive, minimal semantics

 Semaphores

 Basic, easy to understand, hard to program with

 Monitors

 High-level, ideally has language support (Java)

 Messages

 Simple model for communication &
synchronization

 Direct application to distributed systems
47

Synchronization Hardware

 To build these higher-level abstractions, it is

useful to have some help from the hardware

 On a uniprocessor:

 Disable interrupts before entering critical section

 Prevents context switches

 Doesn’t work on multiprocessor

 Need some special atomic instructions

48

Atomic Instructions:

Test-and-Set Lock (TSL)
 Test-and-set uses a lock variable

 Lock == 0 => nobody is using the lock

 Lock == 1 => lock is in use

 In order to acquire lock, must change it’s value from 0=>1

 Hardware executes this atomically!

boolean test_and_set(boolean *lock)

{

boolean old = *lock;

*lock = True;

return old;

}

49

Atomic Instructions: Test-and-Set
 The semantics of test-and-set are:

 Record the old value of the variable

 Set the variable to some non-zero value

 Return the old value

boolean test_and_set(boolean *lock)

{

boolean old = *lock;

*lock = True;

return old;

}

• lock is always True on exit from test-and-set
• Either it was True (locked) already, and nothing changed

• or it was False (available), but the caller now holds it

• Return value is either True if it was locked already, or False if
it was previously available

50

A Lock Implementation

 There are two operations on locks: acquire()

and release()

boolean lock;

void acquire(boolean *lock) {

while(test_and_set(lock));

}

void release(boolean *lock) {

*lock = false;

}

• This is a spinlock
• Uses busy waiting - thread continually executes

while loop in acquire() , consumes CPU cycles
51

Using Locks

Withdraw(acct, amt) {

acquire(lock);

balance = get_balance(acct);

balance = balance - amt;

put_balance(acct,balance);

release(lock);

return balance;

}

Deposit(account, amount) {

acquire(lock);

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct,balance);

release(lock);

return balance;

}

acquire(lock);

balance = get_balance(acct);

balance = balance - amt;

acquire(lock);

put_balance(acct, balance);

release(lock);

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct, balance);

release(lock);

Function Definitions

Possible schedule

52

Next Week

 More on Synchronization

53

Announcement

 Check course website regularly

 Attend Tutorials

54

