
CSCC69H3

Operating Systems

Sina Meraji

U of T

Logistics

 Instructor: Sina Meraji

 Email: sina.mrj@gmail.com

 Office hours: Thu 18-19 pm(by appointment)

 TAs:

 Khrabrov Alexey

 Xu Talia

 jaffer shehbaz

 Mortazavi Seyed Hossein

 Webpage:

 http://www.cdf.utoronto.ca/~csc369h/summer/index.shtml

Khrabrov Alexey

Khrabrov Alexey

Xu Talia

Course Objective

 To understand

 The role of the OS

 Its major components

 The design principles and implementations

 Working on real Operating System assignments

Workload
 This course is very work-intensive

 Why?

 Lectures cover a lot of new concepts

 Many of them very abstract

 Learning by doing!

 This course is much more like the real world:

 Assignments build on realistic OS

▪ Lot of existing code given to you

▪ Don’t expect to understand all of it

 You need to be able to work in a team

 You need to be comfortable with the prereqs.

Linux kernel has

more than 10 million

lines of code!

Assignments (40%)

 Code Reading component:

 Questions about the code we give you

 Reinforce lecture concepts, familiarize you with the

code before you start writing

 Programming component

 Language for this course is C

 Correctness and performance considerations

 Design document component

 Think about what you need to build first

 Tell us in plain English what you were thinking.

 Tell us how to find your code.

5

Exams

 Midterm (20%)

 20% Question about assignments and course

material

 Final (40%),

 Will be cumulative

 Question about assignments

 Lots of final exams from CSC369 are available for

study

 You have to get more than 40(out of 100) to pass

the course

7

There’s tons of help …

 Instructor

 TAs

 Piazza:

 Check course webpage

 Who to ask in case of questions?

Question regarding

assignment & grading?

1) Tutorial

2) Piazza

3) TAs

Question regarding lecture

material or logistics?

Me: sina.mrj@gmail.com

Include “C69” in subject line

Academic Dishonesty

 Plagiarism and cheating

 Please don’t do it!

 Serious academic offenses

 Can discuss tools and concepts with classmates

 Can discuss solutions to assignments with your

partner only!

 All potential cases will be investigated fully

 We run Moss

Grading

Work Notes Weight Due Date

Assignment 1 13% June 4th

Midterm 20% July 3rd

Assignment 2 15% July 9th

Assignment 3 12% August 7th

Final 40% you have to get
more than 40%

Late policy

 Assignments will be submitted electronically

 Due at 11:55pm on due date

 You can submit up to 2 days late

 Except for last assignment

 10% penalty for each day

Introduction

 Read Chapter 1

 Some (much?) of this should be review

 What is an OS and why do I want one?

 How does it relate to the other parts of a

computer system?

 Review some computer organization and C

concepts

 What are the major parts of an OS?
12

What is an Operating System?

Application programs

Operating system

Hardware

CPU(s) Memory I/O devices

Text editor Web browser Compiler

 Turns ugly hardware into
beautiful abstractions
(provides services)

 Serves as a resource
manager

 Allows proper use of resources
(hardware, software, data)

 Serves as a control program
(protection)

 Controls execution of user
programs to prevent errors and
improper use of the computer

The software layer between

user applications and hardware.

What is an Operating System?

 Turns ugly hardware into

beautiful abstractions

(provides services)

 Serves as a resource

manager

 Serves as a control program

(protection)

The software layer between

user applications and hardware.Application programs

Operating system

Hardware

 Will spend much of the rest of the semester on three core

abstractions and resource management services:

 Processes & threads

 Memory management

 File & I/O systems

What is an Operating System

Overview of Computer System

16 CSC369

Memory

Mgmt
Scheduling File System Networking

User App

Synchronization

Machine Dependent Code

User App User App

CPU

Memory Bus

Main

Memory

I/O Bridge

I/O Bus

Disk

Controller

Display

Controller

Ethernet

Controller

OS

Hardware

Storage Hierarchy

 Processor registers, main memory, and auxiliary

memory form a rudimentary memory hierarchy

 The hierarchy can be classified according to memory

speed, cost, and volatility

 Caches can be installed to hide performance

differences when there is a large access-time gap

between two levels

05/08/13 17 CSC369

Disk

Main MemoryCPU
L2/L3

Cache

Larger, slower, cheaper

L1

Cache Tape

Storage Structure

 Main memory (DRAM) stores programs and data
during program execution

 DRAM cannot store these permanently because it is
too small & it is a volatile storage device

 Forms a large array of bytes (1 byte = 8 bits) of
memory, each with its own address

 We say that main memory is byte-addressable

05/08/13 18 CSC369

Caching

 When the processor accesses info at

some level of the storage hierarchy, that

info may be copied to a cache memory

closer to the processor, on a temporary

basis

 A cache is smaller and costlier

 Because caches have limited sizes, cache

management is an important design

problem

 Coherency

05/08/13 19 CSC369

Concurrency

 Every modern computer is a multiprocessor
 CPU and device controllers can execute concurrently,

competing for memory cycles

 A memory controller synchronizes access to shared memory

 Interrupts allow device controllers to signal the CPU that
some event has occurred (e.g. disk I/O complete, network
packet arrived, etc.)

 Generated by a hardware device

 Interrupts are also used to signal errors (e.g. division by zero)
or requests for OS service from a user program (a system
call)

 These types of interrupts are called traps or exceptions

 An Operating System is an event-driven program

05/08/13 20 CSC369

Aside: C Programming &

Memory

 A variable in a C program is a symbolic name for a

data item, stored in memory

 The type of the variable indicates how much storage (how

many bytes) it needs

 Type also determines alignment requirements

 The address of the variable is an index into the big array of

memory words where the data item is stored

 The value of the variable is the actual contents of memory at

that location

 A pointer type variable is just a data item whose contents are

a memory location (usually the address of another var)

05/08/13 21 CSC369

C Example
int main(){

char a = ‘h’;

int b = 0xdeadbeef;

char *c = &a;

int *d = &b;

printf(“b=%d (0x%x)\n”,

b, b);

}

05/08/13 CSC369

0xbfffeb08

a 0xbfffeb07 ‘h’ (0x68)

b06 Unused

b05 Unused

b04 Unused

b03 0xde

b02 0xad

b01 0xbe

b 0xbfffeb00 0xef

aff 0xbf

afe 0xff

afd 0xeb

c=&a 0xbfffeafc 0x07

afb 0xbf

afa 0xff

af9 0xeb

d=&b 0xbfffeaf8 0x00

Memory

Increasing

addresses

• char data type is 1 byte in size

• int data type is 1 word in size (32 bits

for most current architectures)

• occupies 4 bytes, should be word-

aligned

• pointer types are all 1 word in size

Processes and Threads

Reading: 2.1-2.2

Part 1: The Process Concept

 Process = job / unit of work

 Process = a program in execution

 A process contains all state of program in execution

 An address space

 Set of OS resources

 Open files network connections …

 Set of general-purpose registers with

current values

 A process is named by its process ID (PID)

Stack

Heap

Data

Text

SP

PC

January 7, 2010 CSC 369H

Process Data Structures
How does the OS represent a process in the kernel?

 At any time, there are many processes in the system,
each in its own particular state

 The OS data structure representing each process is
called the Process Control Block (PCB)

 The PCB contains all of the info about a process

 The PCB also is where the OS keeps all of a process’
hardware execution state (PC, SP, regs, etc.) when the
process is not running
 This state is everything that is needed to restore the hardware

to the same configuration it was in when the process was
switched out of the hardware (FreeBSD, 81 fields, 408 bytes)

25

January 7, 2010 CSC 369H

Process Control Block

 Generally includes:

 Process state (ready, running, blocked …)

 Program counter: address of the next instruction

 CPU registers: must be saved at an interrupt

 CPU scheduling information: process priority

 Memory management info: page tables

 I/O status information: list of open files

26

January 7, 2010 CSC 369H

Linux PCB
 Called the task_struct in Linux

 Defined in /include/linux/sched.h
struct task_struct {

/* these are hardcoded - don't touch */

volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */

long counter; long priority; unsigned long signal;

unsigned long blocked; /* bitmap of masked signals */

unsigned long flags; /* per process flags, defined below */

int errno; long debugreg[8]; /* Hardware debugging registers */

struct exec_domain *exec_domain;

/* various fields */

struct linux_binfmt *binfmt;

struct task_struct *next_task, *prev_task;

struct task_struct *next_run, *prev_run;

unsigned long saved_kernel_stack;

unsigned long kernel_stack_page;

int exit_code, exit_signal;

…

27

Process states & state changes

 The OS manages processes by keeping
track of their state

 Different events cause changes to a process
state, which the OS must record/implement

05/08/13 28 CSC369

New Ready Running Exit

Blocked

Admit
Dispatch

Time-out

Event

Wait

Event

Occurs

Release

January 7, 2010 CSC 369H

State Queues

How does the OS keep track of processes?

 The OS maintains a collection of queues that represent

the state of all processes in the system

 Typically, the OS has one queue for each state

 Ready, waiting, etc.

 Each PCB is queued on a state queue according to its

current state

 As a process changes state, its PCB is unlinked from

one queue and linked into another

29

January 7, 2010 CSC 369H

State Queues
Netscape

PCB

X Server

PCB Idle PCB

Emacs PCB

Ready

Queue

Console

Queue

Sleep

Queue
.

.

.

ls PCB

• There may be many wait queues, one for each type of
wait (disk, console, timer, network, etc.)

• OS/161 maintains a single wait queue

• “struct array *sleepers” in kern/thread/thread.c

• record address of thing thread is waiting for

Disk I/O

Queue

30

January 7, 2010 CSC 369H

PCBs and State Queues

 PCBs are data structures dynamically

allocated in OS memory

 When a process is created, the OS allocates

a PCB for it, initializes it, and places it on the

Ready queue

 As the process computes, does I/O, etc., its

PCB moves from one queue to another

 When the process terminates, its PCB is de-

allocated
31

January 7, 2010 CSC 369H

What is a Context Switch?

 Context switch: switch the CPU to another

process, saving the state of the old process

and loading the saved state for the new

process

 Context switch time is pure overhead, so some

systems offer specific hardware support

 A performance bottleneck, so new structures

(threads) are being used to avoid it

32

Operations on Processes

 Processes execute concurrently and must be

created and deleted dynamically

 Process creation:

 System Initialization

 A running process

 A user request

 Initialization of a batch job

 Process termination:

 When a process finishes executing last statement

 When a parent causes the termination of a child

 An Error occurred

Process Creation

 A process is created by another process

 Parent is creator, child is created

 In Linux, the parent is the “PPID” field of “ps –f”

 In some systems, the parent defines (or donates)

resources and privileges for its children

 Unix: Process User ID is inherited – children of your shell

execute with your privileges

 After creating a child, the parent may either wait for

it to finish its task or continue in parallel (or both)

Process Creation: Unix

 In Unix, processes are created using fork()
int fork()

 fork()

 Creates a new address space

 Initializes the address space with a copy of the entire
contents of the address space of the parent

 Initializes the kernel resources to point to the resources
used by parent (e.g., open files)

 Fork returns twice

 Returns the child’s PID to the parent, “0” to the child

 Huh?

fork()
int main(int argc, char *argv[])

{

char *name = argv[0];

int child_pid = fork();

if (child_pid == 0) {

printf(“Child of %s is %d\n”, name,

getpid());

return 0;

} else {

printf(“My child is %d\n”, child_pid);

return 0;

}

}

What does this program print?

Child

Parent

Example Output

smeraji% cc t.c

smeraji% ./a.out

My child is 486

Child of a.out is 486

Duplicating Address Spaces

child_pid = fork();

if (child_pid == 0)

{

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0)

{

printf(“child”);

} else {

printf(“parent”);

}

PC

child_pid = 486 child_pid = 0

PC

Divergence

child_pid = fork();

if (child_pid == 0)

{

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0)

{

printf(“child”);

} else {

printf(“parent”);

}

PC

PC

child_pid = 486 child_pid = 0

Why fork()?

 Very useful when the child…

 Is cooperating with the parent

 Relies upon the parent’s data to accomplish its task

 Example: Web server
while (1) {

int sock = accept();

if ((child_pid = fork()) == 0) {

Handle client request

} else {

…..

}

}

January 7, 2010 CSC 369H

Linux Process Tree

init

klogdxfsloginpdflushkswapd

bash

emacs sys161 cs161-gdb

41

Unix Shells

while (1) {

char *cmd = read_command();

int child_pid = fork();

if (child_pid == 0) {

exec(cmd);

} else {

wait(child_pid);

}

}

Example for use of processes:

Concurrent Web Server
Parent

Process

(dispatcher)

Stack

Heap

Data

Text

Child 1

Stack

Heap

Data

Text

Child 2

Stack

Heap

Data

Text

Shared memory (Web cache)

PCB0 PCB1 PCB2

User space

Kernel space

SP SP SP

PC PC
PC

Parallel Programs

 Recall our Web server example that forks off copies of itself

to handle multiple simultaneous requests

 Or any parallel program that executes on a multiprocessor

 To execute these programs we need to

 Create several processes that execute in parallel

 Create shared memory for processes to share data

 Have the OS schedule these processes in parallel

 This situation is very inefficient

 Space: PCB, page tables, etc.

 Time: create data structures, fork and copy addr space, etc.

Example for use of processes:

Concurrent Web Server
Parent

Process

(dispatcher)

Stack

Heap

Data

Text

Child 1

Stack

Heap

Data

Text

Child 2

Stack

Heap

Data

Text

Shared memory (Web cache)

PCB0 PCB1 PCB2

User space

Kernel space

SP SP SP

PC PC
PC

Rethinking Processes

 What is similar in these cooperating processes?

 They all share the same code and data (address space)

 They all share the same privileges

 They all share the same resources (files, sockets, etc.)

 What don’t they share?

 Each has its own execution state: PC, SP, and registers

 Key idea: Why don’t we separate the concept of a

process from its execution state?

 Process: address space, privileges, resources, etc.

 Execution state: PC, SP, registers

 Exec state also called thread of control, or thread

Idea:

Have threads in a Process!

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Guard region

Guard region

Guard region

SP (T3)

SP (T1)

SP (T2)

Threads

 Separate the concepts of processes and threads

 The thread defines a sequential execution stream within a

process (PC, SP, registers)

 The process defines the address space and general process

attributes (everything but threads of execution)

 A thread is bound to a single process

 Processes, however, can have multiple threads

 Every process has at least one thread

 Processes are the containers in which threads execute

 Processes become static, threads are the dynamic entities

Threads: Concurrent Servers

 Recall our forking Web server:

while (1) {

int sock = accept();

if ((child_pid = fork()) == 0) {

Handle client request

} else {

Close socket

}

}

 Using fork() to create new processes to handle
requests in parallel is overkill for such a simple
task

Threads: Concurrent Servers

 Instead, we can create a new thread for
each request

web_server() {

while (1) {

int sock = accept();

thread_fork(handle_request, sock);

}

}

handle_request(int sock) {

Process request

close(sock);

}

January 7, 2010 CSC 369H

Thread Interface (Pthread API)

 pthread_create(pthread_t *tid, pthread_attr_t attr, void
*(*start_routine)(void *), void *arg)
 Create a new thread of control

 New thread id returned in tid, new thread starts executing in
start_routine with argument arg

 pthread_join(pthread_t tid)
 Wait for tid to exit

 pthread_cancel(pthread_t tid)
 Destroy tid

 pthread_exit()
 Terminate the calling thread

51

January 7, 2010 CSC 369H

Thread Scheduling

 The thread scheduler determines when a thread runs

 It uses queues to keep track of what threads are doing

 Just like the OS and processes

 But it is implemented at user-level in a library

 Run queue: Threads currently running (usually one)

 Ready queue: Threads ready to run

 Are there wait queues?

 How would you implement thread_sleep(time)?

52

January 7, 2010 CSC 369H

Threads Summary
 The operating system is a large multithreaded program

 Each process executes as a thread within the OS

 Multithreading is also very useful for applications
 Efficient multithreading requires fast primitives

 Processes are too heavyweight

 Solution is to separate threads from processes

 Now, how do we get our threads to correctly cooperate
with each other?
 Synchronization… coming right up!

53

January 7, 2010 CSC 369H

Cooperating Processes

 A process is independent if it cannot affect or
be affected by the other processes executing
in the system

 No data sharing  process is independent

 A process is cooperating if it is not
independent

 Cooperating processes must be able to
communicate with each other and to
synchronize their actions

54

January 7, 2010 CSC 369H

Interprocess Communication

 Cooperating processes need to exchange information,

using either

 Shared memory (e.g. fork())

 Message passing

 Message passing models

 send(P, msg) – send msg to process P

 receive(Q, msg) – receive msg from process Q

55

Announcement

 Check course website regularly

