
Operating Systems

Operating Systems

Sina Meraji

U of T

Remember example from

third week?

My_work(id_t id) { /* id can be 0 or 1 */

...

flag[id] = true; /* indicate entering CS */

while (flag[1-id]) ;/* entry section */

/* critical section, access protected resource */

flag[id] = false; /* exit section */

... /* remainder section */

}

 What went wrong here?

Types of Resources

 Reusable

 Can be used by one process at a time, released

and used by another process

 printers, memory, processors, files

 Locks, semaphores, monitors

 Consumable

 Dynamically created and destroyed

 Can only be allocated once

 e.g. interrupts, signals, messages

Not just an OS Problem!

 Law passed by Kansas Legislature in early
20th Century:

 “When two trains approach each other at a
crossing, both shall come to a full stop and
neither shall start upon again until the other
has gone.”

Deadlock Defined

 The permanent blocking of a set of processes
that either:

 Compete for system resources, or

 Communicate with each other

 Each process in the set is blocked, waiting for
an event which can only be caused by another
process in the set

 Resources are finite

 Processes wait if a resource they need is
unavailable

 Resources may be held by other waiting processes

Example of Deadlock

 Suppose processes P and Q need (reusable)

resources A and B:

Process Q

...

Process P

...
A

B

Get A

...

Get B

Get B
...

Get A

...

Release A

...

Release B

...

Release B

...

Release A

Example: dining philosophers:

 A philosopher needs two forks to eat.

 Idea for protocol:

 When philosopher gets hungry grab right fork, then grab left fork.

 Is this a good solution?

Deadlock continued …

 What conditions must hold for a deadlock to

occur?

 Necessary conditions

 Sufficient conditions

Conditions for Deadlock

1. Mutual Exclusion

 Only one process may use a resource at a time

2. Hold and wait

 A process may hold allocated resources while

awaiting assignment of others

3. No preemption

 No resource can be forcibly removed from a

process holding it

 These are necessary conditions

One more condition…

4. Circular wait

 A closed chain of processes exists, such that

each process holds at least one resource

needed by the next process in the chain

 Together, these four conditions are

necessary and sufficient for deadlock

Solutions

 Prevention

 Avoidance

 Detection and Recovery

 Do Nothing!

Deadlock Prevention

 Ensure one of the four conditions doesn’t
occur

 Break mutual exclusion - not much help here, as it
is often required for correctness

Preventing Hold-and-Wait

 Break “hold and wait” - processes must request all
resources at once, and will block until entire
request can be granted simultaneously

 May wait a long time for all resources to be available
at the same time

 May hold resources for a long time without using them
(blocking other processes)

 May not know all resource requirements in advance

 An alternative is to release all currently-held
resources when a new one is needed, then make
a request for the entire set of resources

Preventing No-Preemption

 Break “no preemption” - forcibly remove a resource

from one process and assign it to another

 Need to save the state of the process losing the

resource so it can recover later

 May need to rollback to an earlier state

 Name some resources that this works for…

 Name some resources for which this is hard…

 Impossible for consumable resources

Preventing Circular-wait

 Break “circular wait” - assign a linear ordering to
resource types and require that a process holding
a resource of one type, R, can only request
resources that follow R in the ordering

1

2

3

4

5

Preventing Circular-wait

 Break “circular wait” - assign a linear ordering to
resource types and require that a process holding
a resource of one type, R, can only request
resources that follow R in the ordering

 e.g. Ri precedes Rj if i < j

 For deadlock to occur, need P to hold Ri and request
Rj, while Q holds Rj and requests Ri

 This implies that i < j (for P’s request order) and j < i
(for Q’s request order), which is impossible.

 Hard to come up with total order when there are
lots of resource types

Deadlock Avoidance

 All prevention strategies are unsatisfactory in
some situations

 Avoidance allows the first three conditions,
but orders events to ensure circular wait does
not occur

 How is this different from preventing circular wait?

 Requires knowledge of future resource
requests to decide what order to choose

 Amount and type of information varies by
algorithm

Two Avoidance Strategies

1. Do not start a process if its maximum resource

requirements, together with the maximum

needs of all processes already running, exceed

the total system resources

 Pessimistic, assumes all processes will need all their

resources at the same time

2. Do not grant an individual resource request if it

might lead to deadlock

Safe States

 A state is safe if there is at least one sequence of

process executions that does not lead to deadlock,

even if every process requests their maximum

allocation immediately

 Example: 3 processes, 1 resource type, 10

instances

PID Alloc Max Claim

A 3 9

B 2 4

C 2 7

T0: Available = 3

4

T1: Available = 1

0T2: Available = 5

7T3: Available = 0 0
T4: Available = 7

Unsafe States & Algorithm

 An unsafe state is one which is not safe

 Is this the same as a deadlocked state?

 Deadlock avoidance algorithm

 For every resource request

 Update state assuming request is granted

 Check if new state is safe

 If so, continue

 If not, restore the old state and block the process until it

is safe to grant the request

 This is the banker’s algorithm

 Processes must declare maximum needs

 See text for details of the algorithm

Restrictions on Avoidance

 Maximum resource requirements for each

process must be known in advance

 Processes must be independent

 If order of execution is constrained by

synchronization requirements, system is not free

to choose a safe sequence

 There must be a fixed number of resources to

allocate

Deadlock Detection &

Recovery

 Prevention and avoidance is awkward and

costly

 Need to be cautious, thus low utilization

 Instead, allow deadlocks to occur, but detect

when this happens and find a way to break it

 Check for circular wait condition periodically

 When should the system check for

deadlocks?

Deadlock Detection &

Recovery

 How can you detect a deadlock?

Draw resource alloc graph

A B

DC

F

G

ES

R

W

U

T

V

 Check for cycles in resource allocation graph

Deadlock Detection

 Finding circular waits is equivalent to
finding a cycle in the resource allocation
graph

 Nodes are processes (drawn as circles) and
resources (drawn as squares)

 Arcs from a resource to a process represent
allocations

 Arcs from a process to a resource represent
ungranted requests

 Any algorithm for finding a cycle in a
directed graph will do

 note that with multiple instances of a type of
resource, cycles may exist without deadlock

Deadlock Recovery

 Basic idea is to break the cycle

 Drastic - kill all deadlocked processes

 Painful - back up and restart deadlocked
processes (hopefully, non-determinism will keep
deadlock from repeating)

 Better - selectively kill deadlocked processes until
cycle is broken

 Re-run detection alg. after each kill

 Tricky - selectively preempt resources until cycle
is broken

 Processes must be rolled back

Reality Check

 No single strategy for dealing with deadlock

is appropriate for all resources in all

situations

 All strategies are costly in terms of

computation overhead, or restricting use of

resources

 Most operating systems employ the “Ostrich

Algorithm”

 Ignore the problem and hope it doesn’t happen

often

Why does the Ostrich Alg

work?
 Recall causes of deadlock:

 Resources are finite

 Processes wait if a resource they need is unavailable

 Resources may be held by other waiting processes

 Prevention/Avoidance/Detection mostly deal with
last 2 points

 Modern operating systems virtualize most physical
resources, eliminating the first problem
 Some logical resources can’t be virtualized (there has to

be exactly one), such as bank accounts or the process
table

 These are protected by synchronization objects, which
are now the only resources that we can deadlock on

What is atomicity?

 Recall ATM banking example:

 Concurrent deposit/withdrawal operation

 Need to protect shared account balance

 What about transferring funds between accounts?

 Withdraw funds from account A

 Deposit funds into account B

 Should appear as a single atomic operation

 Another process reading the account balances should see either

both updates, or none

 Either both operations complete, or neither does

Why would atomicity fail?

 Suppose fund transfer is implemented by our known

withdraw and deposit functions using locks.

Withdraw(acct, amt) {

acquire(lock);

balance = get_balance(acct);

balance = balance - amt;

put_balance(acct,balance);

release(lock);

return balance;

}

Deposit(acct, amt) {

acquire(lock);

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct,balance);

release(lock);

return balance;

}

Transfer (acctA, acctB, amt) {

Withdraw (acctA,amt);

Deposit (acctB,amt;

}

 What can go wrong?

Definitions for Transactions

 Defn: Transaction

 A collection of operations that performs a single

logical function and are executed atomically

 Here: a sequence of read and write operations,

terminated by a commit or abort

 Defn: Committed

 A transaction that has completed successfully;

 All operations took effect

 Once committed, a transaction cannot be undone

 Defn: Aborted

 A transaction that did not complete normally

 None of the operations took effect

How to ensure atomicity in the

face of failures?

Xct: begin

Read(A)

Read(B)

Read(C)

Write(A)

Write(B)

Write(C)

Xct: commit

Memory Disk

Failure can happen anytime

Write-ahead log

<T_i begins>

<A_old, A_new>

<B_old, B_new>

<C_old, C_new>

<T_i commits>

 Write intended operation to a log on stable storage

 Then execute the actual operation

 Log can be used to undo/redo any transaction,

allowing recovery from arbitrary failures

Write-ahead logging

 Before performing any operations on the
data, write the intended operations to a log
on stable storage

 Log records identify the transaction, the data
item, the old value, and the new value

 Special records indicate the start and commit
(or abort) of a transaction

 Log can be used to undo/redo the effect of
any transactions, allowing recovery from
arbitrary failures

Problems with logging …

 Limitations of basic log strategy:

 Time-consuming to process entire log after failure

 Large amount of space required by log

 Performance penalty – each write requires a log
update before the data update

 Checkpoints help with first two problems

 Periodically write all updates to log and data to
stable storage; write a checkpoint entry to the log

 Recovery only needs to look at log since last ckpt.

Concurrent Transactions

 Transactions must appear to execute in some

arbitrary but serial order

 Soln 1: All transactions execute in a critical section,

with a single common lock (or mutex semaphore)

to protect access to all shared data.

 But most transactions will access different data

 Limits concurrency unnecessarily

 Soln 2: Allow operations from multiple transactions

 To overlap, as long as they don’t conflict

 End result of a set of transactions must be

indistinguishable from Solution 1

Conflicting Operations

 Operations in two different transactions

conflict if both access the same data item and

at least one is a write

 Non-conflicting operations can be reordered

(swapped with each other) without changing the

outcome

 If a serial schedule can be obtained by swapping

non-conflicting operations, then the original

schedule is conflict-serializable

Conflict Serializability

 Is there an equivalent serial execution of T0
and T1 ?

T0 T1

read(A)

write(A)

read(A)

write(A)

read(B)

write(B)

read(B)

write(B)

Conflict Serializabile?

T0 T1

read(A)

write(A)

read(B)

write(B)

read(A)

write(A)

read(B)

write(B)

T0 T1

read(A)

write(A)

read(B)

write(B)

read(A)

write(A)

read(B)

write(B)Yes
No

Ensuring serializability

 Two-phase locking

 Individual data items have their own locks

 Each transaction has a growing phase and

shrinking phase:

 Growing: a transaction may obtain locks, but may not

release any lock

 Shrinking: a transaction may release locks, but may

not acquire any new locks.

 Does not guarantee deadlock-free

Example of 2 phase locking

Transaction_start

Lock(A)

Read(A)

Lock(B)

Read(B)

Lock(C)

Unlock(A)

Unlock(B)

Write(C)

Unlock(C)

Transaction_end

Growing

Shrinking

Timestamp Protocols

 Each transaction gets unique timestamp

before it starts executing

 Transaction with “earlier” timestamp must appear

to complete before any later transactions

 Each data item has two timestamps

 W-TS: the largest timestamp of any transaction

that successfully wrote the item

 R-TS: the largest timestamp of any transaction

that successfully read the item

Timestamp Ordering
 Reads:

 If transaction has “earlier” timestamp than W-TS on data,

then transaction needs to read a value that was already

overwritten

 Abort transaction, restart with new timestamp

 Writes:

 If transaction has “earlier” timestamp than R-TS (W-TS) on

data, then the value produced by this write should have been

read (overwritten) already!

 Abort & restart

 Some transactions may “starve” (abort & restart

repeatedly)

Deadlock and Starvation

 A set of threads is in a deadlocked state

when every process in the set is waiting for a

event that can be caused only by another

process in the set

 A thread is suffering starvation (or indefinite

postponement) if it is waiting indefinitely

because other threads are in some way

preferred

Communication Deadlocks

 Messages between communicating

processes are a consumable resource

 Example:

 Process B is waiting for a request

 Process A sends a request to B, and waits for reply

 The request message is lost in the network

 B keeps waiting for a request, A keeps waiting for a

reply, we have a deadlock

 Solution: Use timeouts and protocols to

detect duplicate messages

Livelock

 Occurs when a set of processes continually retry

some failed operation and prevent other

processes in the set from making progress

 Functionally equivalent to deadlock

 Ex 1: two processes each request the same two

spinlocks in the opposite order

 Each succeeds in first acquire, then spins

 CPU utilization is high, but no progress

 Ex 2: A set of processes retries a failed fork()

 operation when the process table is full

 No process exits, so fork() keeps failing

