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Remember example from 

third week?

My_work(id_t id) { /* id can be 0 or 1 */

...

flag[id] = true; /* indicate entering CS */

while (flag[1-id]) ;/* entry section */

/* critical section, access protected resource */

flag[id] = false; /* exit section */

... /* remainder section */

}

 What went wrong here?



Types of Resources

 Reusable

 Can be used by one process at a time, released 

and used by another process

 printers, memory, processors, files

 Locks, semaphores, monitors

 Consumable

 Dynamically created and destroyed

 Can only be allocated once

 e.g. interrupts, signals, messages



Not just an OS Problem!

 Law passed by Kansas Legislature in early 
20th Century:

 “When two trains approach each other at a 
crossing, both shall come to a full stop and 
neither shall start upon again until the other 
has gone.”



Deadlock Defined

 The permanent blocking of a set of processes 
that either:

 Compete for system resources, or

 Communicate with each other

 Each process in the set is blocked, waiting for 
an event which can only be caused by another 
process in the set

 Resources are finite

 Processes wait if a resource they need is 
unavailable

 Resources may be held by other waiting processes



Example of Deadlock

 Suppose processes P and Q need (reusable) 

resources A and B:

Process Q

...

Process P

...
A

B

Get A

...

Get B

Get B
...

Get A

...

Release A

...

Release B

...

Release B

...

Release A



Example: dining philosophers:

 A philosopher needs two forks to eat.

 Idea for protocol:

 When philosopher gets hungry grab right fork, then grab left fork.

 Is this a good solution?



Deadlock continued …

 What conditions must hold for a deadlock to 

occur?

 Necessary conditions

 Sufficient conditions



Conditions for Deadlock

1. Mutual Exclusion

 Only one process may use a resource at a time

2. Hold and wait

 A process may hold allocated resources while 

awaiting assignment of others

3. No preemption

 No resource can be forcibly removed from a 

process holding it

 These are necessary conditions



One more condition…

4. Circular wait

 A closed chain of processes exists, such that 

each process holds at least one resource 

needed by the next process in the chain

 Together, these four conditions are 

necessary and sufficient for deadlock



Solutions

 Prevention

 Avoidance

 Detection and Recovery

 Do Nothing!



Deadlock Prevention

 Ensure one of the four conditions doesn’t 
occur

 Break mutual exclusion - not much help here, as it 
is often required for correctness



Preventing Hold-and-Wait

 Break “hold and wait” - processes must request all 
resources at once, and will block until entire 
request can be granted simultaneously

 May wait a long time for all resources to be available 
at the same time

 May hold resources for a long time without using them 
(blocking other processes)

 May not know all resource requirements in advance

 An alternative is to release all currently-held 
resources when a new one is needed, then make 
a request for the entire set of resources



Preventing No-Preemption

 Break “no preemption” - forcibly remove a resource 

from one process and assign it to another

 Need to save the state of the process losing the 

resource so it can recover later

 May need to rollback to an earlier state

 Name some resources that this works for…

 Name some resources for which this is hard…

 Impossible for consumable resources



Preventing Circular-wait

 Break “circular wait” - assign a linear ordering to 
resource types and require that a process holding 
a resource of one type, R, can only request 
resources that follow R in the ordering

1

2

3

4

5



Preventing Circular-wait

 Break “circular wait” - assign a linear ordering to 
resource types and require that a process holding 
a resource of one type, R, can only request 
resources that follow R in the ordering

 e.g. Ri precedes Rj if i < j 

 For deadlock to occur, need P to hold Ri and request 
Rj, while Q holds Rj and requests Ri

 This implies that i < j (for P’s request order) and j < i
(for Q’s request order), which is impossible.

 Hard to come up with total order when there are  
lots of resource types



Deadlock Avoidance

 All prevention strategies are unsatisfactory in 
some situations

 Avoidance allows the first three conditions, 
but orders events to ensure circular wait does 
not occur

 How is this different from preventing circular wait?

 Requires knowledge of future resource 
requests to decide what order to choose

 Amount and type of information varies by 
algorithm



Two Avoidance Strategies

1. Do not start a process if its maximum resource 

requirements, together with the maximum 

needs of all processes already running, exceed 

the total system resources

 Pessimistic, assumes all processes will need all their 

resources at the same time

2. Do not grant an individual resource request if it 

might lead to deadlock



Safe States

 A state is safe if there is at least one sequence of 

process executions that does not lead to deadlock, 

even if every process requests their maximum 

allocation immediately

 Example: 3 processes, 1 resource type, 10 

instances

PID Alloc Max Claim

A 3 9

B 2 4

C 2 7

T0:  Available = 3

4

T1:  Available = 1

0T2:  Available = 5

7T3:  Available = 0 0
T4:  Available = 7



Unsafe States & Algorithm

 An unsafe state is one which is not safe

 Is this the same as a deadlocked state?

 Deadlock avoidance algorithm

 For every resource request

 Update state assuming request is granted

 Check if new state is safe

 If so, continue

 If not, restore the old state and block the process until it 

is safe to grant the request

 This is the banker’s algorithm

 Processes must declare maximum needs

 See text for details of the algorithm



Restrictions on Avoidance

 Maximum resource requirements for each 

process must be known in advance

 Processes must be independent

 If order of execution is constrained by 

synchronization requirements, system is not free 

to choose a safe sequence

 There must be a fixed number of resources to 

allocate



Deadlock Detection & 

Recovery

 Prevention and avoidance is awkward and 

costly

 Need to be cautious, thus low utilization

 Instead, allow deadlocks to occur, but detect 

when this happens and find a way to break it

 Check for circular wait condition periodically

 When should the system check for 

deadlocks?



Deadlock Detection & 

Recovery

 How can you detect a deadlock?



Draw resource alloc graph
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 Check for cycles in resource allocation graph



Deadlock Detection

 Finding circular waits is equivalent to 
finding a cycle in the resource allocation 
graph

 Nodes are processes (drawn as circles) and 
resources (drawn as squares)

 Arcs from a resource to a process represent 
allocations

 Arcs from a process to a resource represent 
ungranted requests

 Any algorithm for finding a cycle in a 
directed graph will do

 note that with multiple instances of a type of 
resource, cycles may exist without deadlock



Deadlock Recovery

 Basic idea is to break the cycle

 Drastic - kill all deadlocked processes

 Painful - back up and restart deadlocked 
processes (hopefully, non-determinism will keep 
deadlock from repeating)

 Better - selectively kill deadlocked processes until 
cycle is broken

 Re-run detection alg. after each kill

 Tricky - selectively preempt resources until cycle 
is broken

 Processes must be rolled back



Reality Check

 No single strategy for dealing with deadlock 

is appropriate for all resources in all 

situations

 All strategies are costly in terms of 

computation overhead, or restricting use of 

resources

 Most operating systems employ the “Ostrich 

Algorithm”

 Ignore the problem and hope it doesn’t happen 

often



Why does the Ostrich Alg 

work?
 Recall causes of deadlock:

 Resources are finite

 Processes wait if a resource they need is unavailable

 Resources may be held by other waiting processes

 Prevention/Avoidance/Detection mostly deal with 
last 2 points

 Modern operating systems virtualize most physical 
resources, eliminating the first problem
 Some logical resources can’t be virtualized (there has to 

be exactly one), such as bank accounts or the process 
table

 These are protected by synchronization objects, which 
are now the only resources that we can deadlock on



What is atomicity?

 Recall ATM banking example:

 Concurrent deposit/withdrawal operation

 Need to protect shared account balance

 What about transferring funds between accounts?

 Withdraw funds from account A

 Deposit funds into account B

 Should appear as a single atomic operation

 Another process reading the account balances should see either 

both updates, or none

 Either both operations complete, or neither does



Why would atomicity fail?

 Suppose fund transfer is implemented by our known 

withdraw and deposit functions using locks.

Withdraw(acct, amt) {

acquire(lock);

balance = get_balance(acct);

balance = balance - amt;

put_balance(acct,balance);

release(lock);

return balance;

}

Deposit(acct, amt) {

acquire(lock);

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct,balance);

release(lock);

return balance;

}

Transfer (acctA, acctB, amt) {

Withdraw (acctA,amt);

Deposit (acctB,amt;

}

 What can go wrong?



Definitions for Transactions

 Defn: Transaction

 A collection of operations that performs a single 

logical function and are executed atomically

 Here: a sequence of read and write operations, 

terminated by a commit or abort

 Defn: Committed

 A transaction that has completed successfully; 

 All operations took effect

 Once committed, a transaction cannot be undone

 Defn: Aborted 

 A transaction that did not complete normally

 None of the operations took effect



How to ensure atomicity in the 

face of failures?

Xct: begin

Read(A)

Read(B)

Read(C)

Write(A)

Write(B)

Write(C)

Xct: commit

Memory Disk

Failure can happen anytime

Write-ahead log

<T_i begins>

<A_old, A_new>

<B_old, B_new>

<C_old, C_new>

<T_i commits>

 Write intended operation to a log on stable storage

 Then execute the actual operation

 Log can be used to undo/redo any transaction, 

allowing recovery from arbitrary failures



Write-ahead logging

 Before performing any operations on the 
data, write the intended operations to a log
on stable storage

 Log records identify the transaction, the data 
item, the old value, and the new value

 Special records indicate the start and commit
(or abort) of a transaction

 Log can be used to undo/redo the effect of 
any transactions, allowing recovery from 
arbitrary failures



Problems with logging …

 Limitations of basic log strategy:

 Time-consuming to process entire log after failure

 Large amount of space required by log

 Performance penalty – each write requires a log 
update before the data update

 Checkpoints help with first two problems

 Periodically write all updates to log and data to 
stable storage; write a checkpoint entry to the log

 Recovery only needs to look at log since last ckpt.



Concurrent Transactions

 Transactions must appear to execute in some 

arbitrary but serial order

 Soln 1: All transactions execute in a critical section, 

with a single common lock (or mutex semaphore) 

to protect access to all shared data.  

 But most transactions will access different data

 Limits concurrency unnecessarily

 Soln 2: Allow operations from multiple transactions

 To overlap, as long as they don’t conflict

 End result of a set of transactions must be 

indistinguishable from Solution 1



Conflicting Operations

 Operations in two different transactions 

conflict if both access the same data item and 

at least one is a write

 Non-conflicting operations can be reordered 

(swapped with each other) without changing the 

outcome

 If a serial schedule can be obtained by swapping 

non-conflicting operations, then the original 

schedule is conflict-serializable



Conflict Serializability

 Is there an equivalent serial execution of T0 
and T1 ?

T0 T1

read(A)

write(A)

read(A)

write(A)

read(B)

write(B)

read(B)

write(B)



Conflict Serializabile?

T0 T1

read(A)

write(A)

read(B)

write(B)

read(A)

write(A)

read(B)

write(B)

T0 T1

read(A)

write(A)

read(B)

write(B)

read(A)

write(A)

read(B)

write(B)Yes
No



Ensuring serializability

 Two-phase locking

 Individual data items have their own locks

 Each transaction has a growing phase and 

shrinking phase:

 Growing: a transaction may obtain locks, but may not 

release any lock

 Shrinking: a transaction may release locks, but may 

not acquire any new locks.

 Does not guarantee deadlock-free



Example of 2 phase locking

Transaction_start

Lock(A)

Read(A)

Lock(B)

Read(B)

Lock(C)

Unlock(A)

Unlock(B)

Write(C)

Unlock(C)

Transaction_end

Growing

Shrinking



Timestamp Protocols

 Each transaction gets unique timestamp

before it starts executing

 Transaction with “earlier” timestamp must appear 

to complete before any later transactions

 Each data item has two timestamps

 W-TS: the largest timestamp of any transaction 

that successfully wrote the item

 R-TS: the largest timestamp of any transaction 

that successfully read the item



Timestamp Ordering
 Reads:

 If transaction has “earlier” timestamp than W-TS on data, 

then transaction needs to read a value that was already 

overwritten

 Abort transaction, restart with new timestamp

 Writes:

 If transaction has “earlier” timestamp than R-TS (W-TS) on 

data, then the value produced by this write should have been 

read (overwritten) already!

 Abort & restart

 Some transactions may “starve” (abort & restart 

repeatedly)



Deadlock and Starvation

 A set of threads is in a deadlocked state 

when  every process in the set is waiting for a 

event  that can be caused only by another 

process in the set

 A thread is suffering starvation (or indefinite  

postponement) if it is waiting indefinitely 

because other threads are in some way 

preferred



Communication Deadlocks

 Messages between communicating 

processes are a consumable resource

 Example:

 Process B is waiting for a request

 Process A sends a request to B, and waits for reply

 The request message is lost in the network

 B keeps waiting for a request, A keeps waiting for a 

reply, we have a deadlock

 Solution: Use timeouts and protocols to 

detect duplicate messages



Livelock

 Occurs when a set of processes continually retry 

some failed operation and prevent other 

processes in the set from making progress

 Functionally equivalent to deadlock

 Ex 1: two processes each request the same two 

spinlocks in the opposite order

 Each succeeds in first acquire, then spins

 CPU utilization is high, but no progress

 Ex 2: A set of processes retries a failed fork() 

 operation when the process table is full

 No process exits, so fork() keeps failing


