Operating Systems

Operating Systems
Sina Meraji
UofT

Remember example from
third week?

My work(id t id) { /* id can be 0 or 1 */

flag[id] true; /* indicate entering CS */
while (flag[l-id]) ;/* entry section */

/* critical section, access protected resource */
flag[id] false; /* exit section */

/* remainder section */

e \What went wrong here?

Types of Resources

e Reusable

e Can be used by one process at a time, released
and used by another process

printers, memory, processors, files
Locks, semaphores, monitors

e Consumable

o Dynamically created and destroyed

e Can only be allocated once
e.g. interrupts, signals, messages

Not just an OS Problem! 43

e Law passed by Kansas Legislature in early
20th Century:
e “When two trains approach each other at a

crossing, both shall come to a full stop and
neither shall start upon again until the other

Deadlock Defined eos:

e The permanent blocking of a set of processes
that either:
» Compete for system resources, or
e Communicate with each other

e Each process in the set is blocked, waiting for
an event which can only be caused by another
process in the set

e Resources are finite

e Processes wait if a resource they need is
unavailable

e Resources may be held by other waiting processes

Example of Deadlock

e Suppose processes P and Q need (reusable)

resources A and B:

Process P

Get A < /\
Get B

Release A

B
Release B

Process Q
Get B
Get A
Release B

Release A

Example: dining philosophers:

o

e A philosopher needs two forks to eat.
e Idea for protocol:

e When philosopher gets hungry grab right fork, then grab left fork.
e Is this a good solution?

Deadlock continued ...

e What conditions must hold for a deadlock to
occur?

e Necessary conditions
e Sufficient conditions

Conditions for Deadlock

1. Mutual Exclusion
e Only one process may use a resource at a time

2. Hold and wait

e A process may hold allocated resources while
awaiting assignment of others

3. No preemption

e No resource can be forcibly removed from a
process holding it

e These are necessary conditions

One more condition...

4. Circular wait

e A closed chain of processes exists, such that
each process holds at least one resource
needed by the next process in the chain

e Together, these four conditions are
necessary and sufficient for deadlock

Solutions

e Prevention
e Avoidance
e Detection and Recovery

e Do Nothing!

Deadlock Prevention

e Ensure one of the four conditions doesn’t
occur

e Break mutual exclusion - not much help here, as it
IS often required for correctness

Preventing Hold-and-Wait

Break “hold and wait” - processes must request all
resources at once, and will block until entire
request can be granted simultaneously

May wait a long time for all resources to be available
at the same time

May hold resources for a long time without using them
(blocking other processes)

May not know all resource requirements in advance

An alternative is to release all currently-held
resources when a new one is needed, then make
a request for the entire set of resources

Preventing No-Preemption

e Break “no preemption” - forcibly remove a resource
from one process and assign it to another

Need to save the state of the process losing the
resource so it can recover later

May need to rollback to an earlier state

Name some resources that this works for...
Name some resources for which this is hard...
Impossible for consumable resources

Preventing Circular-wait

e Break “circular wait” - assign a linear ordering to
resource types and require that a process holo
a resource of one type, R, can only request
resources that follow R in the ordering

W T

ng

Preventing Circular-wait

Break “circular wait” - assign a linear ordering to
resource types and require that a process holding
a resource of one type, R, can only request
resources that follow R in the ordering

e.g. R;precedes R; if 1 <

For deadlock to occur, need P to hold R, and request

R;, while Q holds R; and requests R,

This implies that i < (for P’'s request order) and j < |
(for Q’'s request order), which is impossible.

Hard to come up with total order when there are
lots of resource types

Deadlock Avoidance

e All prevention strategies are unsatisfactory in
some situations

e Avoidance allows the first three conditions,
but orders events to ensure circular wait does
not occur

How is this different from preventing circular wait?
e Requires knowledge of future resource
requests to decide what order to choose

Amount and type of information varies by
algorithm

Two Avoidance Strategies

1. Do not start a process if its maximum resource
requirements, together with the maximum
needs of all processes already running, exceed
the total system resources

Pessimistic, assumes all processes will need all their
resources at the same time

2. Do not grant an individual resource request If it
might lead to deadlock

Safe States

e A state is safe if there is at least one sequence of

process executions that does not lead to deadlock,

even If every process requests their maximum

allocation immediately

e Example: 3 processes, 1 resource type, 10

Instances

T0:
T1:
T2:

T3:
T4:

Available = 3
Available = 1
Available = 5
Available = 0
Available = 7

PID | Alloc Max Claim
A |3 9
s |7 A0 4
cyp /Y 7

Unsafe States & Algorithm

e An unsafe state is one which is not safe
e Is this the same as a deadlocked state?

e Deadlock avoidance algorithm

e For every resource request
Update state assuming request is granted
Check if new state is safe
If so, continue

If not, restore the old state and block the process until it
IS safe to grant the request

e This is the banker’s algorithm

e Processes must declare maximum needs
o See text for details of the algorithm

Restrictions on Avoidance

e Maximum resource requirements for each
process must be known in advance

e Processes must be independent

If order of execution is constrained by
synchronization requirements, system is not free
to choose a safe sequence

e There must be a fixed number of resources to
allocate

Deadlock Detection & o°
Recovery

e Prevention and avoidance is awkward anc
costly
Need to be cautious, thus low utilization

e Instead, allow deadlocks to occur, but detect
when this happens and find a way to break it

Check for circular wait condition periodically

e When should the system check for
deadlocks?

Deadlock Detection &
Recovery

e How can you detect a deadlock?

Draw resource alloc graph -

R
. o

e Check for cycles in resource allocation graph

Deadlock Detection

e Finding circular waits Is equivalent to

finding a cycle in the resource allocation
graph

are processes (drawn as circles) and
resources (drawn as sguares)

from a resource to a process represent
allocations

from a process to a resource represent
ungranted requests

e Any algorithm for finding a cycle in a
directed graph will do

note that with multiple instances of a type of
resource, cycles may exist without deadlock

Deadlock Recovery

e Basic idea Is to break the cycle
e Drastic - kill all deadlocked processes

o Painful - back up and restart deadlocked
orocesses (hopefully, non-determinism will keep
deadlock from repeating)

o Better - selectively kill deadlocked processes until
cycle is broken
Re-run detection alg. after each Kkill
e Tricky - selectively preempt resources until cycle
IS broken
Processes must be rolled back

Reality Check

e No single strategy for dealing with deadlock
IS appropriate for all resources in all
situations

e All strategies are costly in terms of
computation overhead, or restricting use of
resources

e Most operating systems employ the “Ostrich
Algorithm”

Ignore the problem and hope it doesn’t happen
often

Why does the Ostrich Alg

work?

e Recall causes of deadlock:
e Resources are finite
e Processes walit if a resource they need is unavailable
e Resources may be held by other waiting processes

e Prevention/Avoidance/Detection mostly deal with
last 2 points

e Modern operating systems virtualize most physical
resources, eliminating the first problem

e Some logical resources can’t be virtualized (there has to
be exactly one), such as bank accounts or the process
table

These are protected by synchronization objects, which
are now the only resources that we can deadlock on

What Is atomicity?

e Recall ATM banking example:
e Concurrent deposit/withdrawal operation
e Need to protect shared account balance

e \What about transferring funds between accounts?
e Withdraw funds from account A
e Deposit funds into account B

e Should appear as a single atomic operation

e Another process reading the account balances should see either
both updates, or none

o Either both operations complete, or neither does

Why would atomicity fail?

e Suppose fund transfer is implemented by our known

withdraw and deposit functions using locks.

Withdraw (acct, amt) {

acquire (lock) ;

balance = get balance (acct);

balance = balance - amt;
put balance (acct,balance);
release (lock) ;

return balance;

Deposit (acct, amt) {

acquire (lock) ;

balance = get balance (acct);
balance = balance + amt;

put balance (acct,balance);
release (lock) ;

return balance;

Withdraw
Deposit

}

Transfer (acctA, acctB, amt) {

(acctA, amt) ;
(acctB, amt;

e \What can go wrong?

Definitions for Transactions soes

e Defn: Transaction

e A collection of operations that performs a single
logical function and are executed atomically

e Here: a sequence of read and write operations,
terminated by a commit or abort

e Defn: Committed
e A transaction that has completed successfully;
o All operations took effect
e Once committed, a transaction cannot be undone

e Defn: Aborted

e A transaction that did not complete normally
o None of the operations took effect

How to ensure atomicity in the
face of failures?

AN
Xct: begin ~_
Read (Memory Disk
Read (
Read (~_

Write
Write
Write

)

)

)

A) _ :

B) ; Failure can happen anytime
C

A
B
C
(
(
(C)

Write-ahead log

Xct: commit

<T i begins>
e Write intended operation to a log on stable storage | <a old, A new>
e Then execute the actual operation

e Log can be used to undo/redo any transaction,
allowing recovery from arbitrary failures

<B old, B_new>

<C old, C_new>

<T_icommits>

Write-ahead logging

e Before performing any operations on the
data, write the intended operations to a log
on stable storage

e Log records identify the transaction, the data
item, the old value, and the new value

e Special records indicate the start and commit
(or abort) of a transaction

e Log can be used to undo/redo the effect of
any transactions, allowing recovery from
arbitrary failures

Problems with logging ...

e Limitations of basic log strategy:
e Time-consuming to process entire log after failure
e Large amount of space required by log

e Performance penalty — each write requires a log
update before the data update

e Checkpoints help with first two problems

o Periodically write all updates to log and data to
stable storage; write a checkpoint entry to the log

e Recovery only needs to look at log since last ckpt.

Concurrent Transactions

e Transactions must appear to execute in some
arbitrary but serial order

Soln 1: All transactions execute in a critical section,
with a single common lock (or mutex semaphore)
to protect access to all shared data.

But most transactions will access different data
Limits concurrency unnecessarily

Soln 2: Allow operations from multiple transactions
To overlap, as long as they don't conflict

End result of a set of transactions must be
iIndistinguishable from Solution 1

Conflicting Operations

e Operations in two different transactions
conflict If both access the same data item and
at least one Is a write

Non-conflicting operations can be reordered
(swapped with each other) without changing the
outcome

If a serial schedule can be obtained by swapping
non-conflicting operations, then the original
schedule is conflict-serializable

Conflict Serializability

e |s there an equivalent serial execution of T
and T1 ?
T, T,
read(A)
write(A)
read(A)
write(A)
read(B)
write(B)
read(B)

write(B)

Conflict Serializabile?

TO Tl

read(A)

write(A)

read(B)

write(B)
read(A)
write(A)
read(B)

Yes

write(B)

TO Tl
read(A)
write(A)
read(B)
write(B)

read(A)

write(A)

read(B) "

write(B)

Ensuring serializability

e Two-phase locking
e Individual data items have their own locks
e Each transaction has a growing phase and

shrinking phase:

Growing: a transaction may obtain locks, but may not
release any lock

Shrinking: a transaction may release locks, but may
not acquire any new locks.

e Does not guarantee deadlock-free

Example of 2 phase locking

Transaction_start
_ock(A) 3
Read(A)

_ock(B) >Growing
Read(B)

_ock(C) J
Unlock(A)
Unlock(B) » Shrinking
Write(C)

Unlock(C) -
Transaction_end

Timestamp Protocols

e Each transaction gets unique timestamp
before It starts executing

e Transaction with “earlier” timestamp must appear
to complete before any later transactions
e Each data item has two timestamps

o W-TS: the largest timestamp of any transaction
that successfully wrote the item

e R-TS: the largest timestamp of any transaction
that successfully read the item

Timestamp Ordering

e Reads:

e |[f transaction has “earlier” timestamp than W-TS on data,
then transaction needs to read a value that was already
overwritten

Abort transaction, restart with new timestamp

o Writes:

e If transaction has “earlier” timestamp than R-TS (W-TS) on
data, then the value produced by this write should have been
read (overwritten) already!

Abort & restart

e Some transactions may “starve” (abort & restart
repeatedly)

Deadlock and Starvation

e A set of threads iIs In a deadlocked state

when every process in the set is waiting for a

event that can be caused only by another
process in the set

e A thread is suffering starvation (or indefinite

postponement) if it Is waiting indefinitely
pecause other threads are in some way
oreferred

Communication Deadlocks

e Messages between communicating
processes are a consumable resource

e Example:

e Process B is waiting for a request
e Process A sends a request to B, and waits for reply
e The request message is lost in the network
o B keeps waiting for a request, A keeps waiting for a
reply, we have a deadlock
e Solution: Use timeouts and protocols to
detect duplicate messages

Livelock

e Occurs when a set of processes continually retry
some failed operation and prevent other
processes in the set from making progress

e Functionally equivalent to deadlock

EXx 1. two processes each reguest the same two
spinlocks in the opposite order

Each succeeds in first acquire, then spins
CPU utilization is high, but no progress

Ex 2. A set of processes retries a failed fork()
operation when the process table is full
No process exits, so fork() keeps failing

