
Operating Systems

Operating Systems

Sina Meraji

U of T



Remember example from 

third week?

My_work(id_t id) { /* id can be 0 or 1 */

...

flag[id] = true; /* indicate entering CS */

while (flag[1-id]) ;/* entry section */

/* critical section, access protected resource */

flag[id] = false; /* exit section */

... /* remainder section */

}

 What went wrong here?



Types of Resources

 Reusable

 Can be used by one process at a time, released 

and used by another process

 printers, memory, processors, files

 Locks, semaphores, monitors

 Consumable

 Dynamically created and destroyed

 Can only be allocated once

 e.g. interrupts, signals, messages



Not just an OS Problem!

 Law passed by Kansas Legislature in early 
20th Century:

 “When two trains approach each other at a 
crossing, both shall come to a full stop and 
neither shall start upon again until the other 
has gone.”



Deadlock Defined

 The permanent blocking of a set of processes 
that either:

 Compete for system resources, or

 Communicate with each other

 Each process in the set is blocked, waiting for 
an event which can only be caused by another 
process in the set

 Resources are finite

 Processes wait if a resource they need is 
unavailable

 Resources may be held by other waiting processes



Example of Deadlock

 Suppose processes P and Q need (reusable) 

resources A and B:

Process Q

...

Process P

...
A

B

Get A

...

Get B

Get B
...

Get A

...

Release A

...

Release B

...

Release B

...

Release A



Example: dining philosophers:

 A philosopher needs two forks to eat.

 Idea for protocol:

 When philosopher gets hungry grab right fork, then grab left fork.

 Is this a good solution?



Deadlock continued …

 What conditions must hold for a deadlock to 

occur?

 Necessary conditions

 Sufficient conditions



Conditions for Deadlock

1. Mutual Exclusion

 Only one process may use a resource at a time

2. Hold and wait

 A process may hold allocated resources while 

awaiting assignment of others

3. No preemption

 No resource can be forcibly removed from a 

process holding it

 These are necessary conditions



One more condition…

4. Circular wait

 A closed chain of processes exists, such that 

each process holds at least one resource 

needed by the next process in the chain

 Together, these four conditions are 

necessary and sufficient for deadlock



Solutions

 Prevention

 Avoidance

 Detection and Recovery

 Do Nothing!



Deadlock Prevention

 Ensure one of the four conditions doesn’t 
occur

 Break mutual exclusion - not much help here, as it 
is often required for correctness



Preventing Hold-and-Wait

 Break “hold and wait” - processes must request all 
resources at once, and will block until entire 
request can be granted simultaneously

 May wait a long time for all resources to be available 
at the same time

 May hold resources for a long time without using them 
(blocking other processes)

 May not know all resource requirements in advance

 An alternative is to release all currently-held 
resources when a new one is needed, then make 
a request for the entire set of resources



Preventing No-Preemption

 Break “no preemption” - forcibly remove a resource 

from one process and assign it to another

 Need to save the state of the process losing the 

resource so it can recover later

 May need to rollback to an earlier state

 Name some resources that this works for…

 Name some resources for which this is hard…

 Impossible for consumable resources



Preventing Circular-wait

 Break “circular wait” - assign a linear ordering to 
resource types and require that a process holding 
a resource of one type, R, can only request 
resources that follow R in the ordering

1

2

3

4

5



Preventing Circular-wait

 Break “circular wait” - assign a linear ordering to 
resource types and require that a process holding 
a resource of one type, R, can only request 
resources that follow R in the ordering

 e.g. Ri precedes Rj if i < j 

 For deadlock to occur, need P to hold Ri and request 
Rj, while Q holds Rj and requests Ri

 This implies that i < j (for P’s request order) and j < i
(for Q’s request order), which is impossible.

 Hard to come up with total order when there are  
lots of resource types



Deadlock Avoidance

 All prevention strategies are unsatisfactory in 
some situations

 Avoidance allows the first three conditions, 
but orders events to ensure circular wait does 
not occur

 How is this different from preventing circular wait?

 Requires knowledge of future resource 
requests to decide what order to choose

 Amount and type of information varies by 
algorithm



Two Avoidance Strategies

1. Do not start a process if its maximum resource 

requirements, together with the maximum 

needs of all processes already running, exceed 

the total system resources

 Pessimistic, assumes all processes will need all their 

resources at the same time

2. Do not grant an individual resource request if it 

might lead to deadlock



Safe States

 A state is safe if there is at least one sequence of 

process executions that does not lead to deadlock, 

even if every process requests their maximum 

allocation immediately

 Example: 3 processes, 1 resource type, 10 

instances

PID Alloc Max Claim

A 3 9

B 2 4

C 2 7

T0:  Available = 3

4

T1:  Available = 1

0T2:  Available = 5

7T3:  Available = 0 0
T4:  Available = 7



Unsafe States & Algorithm

 An unsafe state is one which is not safe

 Is this the same as a deadlocked state?

 Deadlock avoidance algorithm

 For every resource request

 Update state assuming request is granted

 Check if new state is safe

 If so, continue

 If not, restore the old state and block the process until it 

is safe to grant the request

 This is the banker’s algorithm

 Processes must declare maximum needs

 See text for details of the algorithm



Restrictions on Avoidance

 Maximum resource requirements for each 

process must be known in advance

 Processes must be independent

 If order of execution is constrained by 

synchronization requirements, system is not free 

to choose a safe sequence

 There must be a fixed number of resources to 

allocate



Deadlock Detection & 

Recovery

 Prevention and avoidance is awkward and 

costly

 Need to be cautious, thus low utilization

 Instead, allow deadlocks to occur, but detect 

when this happens and find a way to break it

 Check for circular wait condition periodically

 When should the system check for 

deadlocks?



Deadlock Detection & 

Recovery

 How can you detect a deadlock?



Draw resource alloc graph
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 Check for cycles in resource allocation graph



Deadlock Detection

 Finding circular waits is equivalent to 
finding a cycle in the resource allocation 
graph

 Nodes are processes (drawn as circles) and 
resources (drawn as squares)

 Arcs from a resource to a process represent 
allocations

 Arcs from a process to a resource represent 
ungranted requests

 Any algorithm for finding a cycle in a 
directed graph will do

 note that with multiple instances of a type of 
resource, cycles may exist without deadlock



Deadlock Recovery

 Basic idea is to break the cycle

 Drastic - kill all deadlocked processes

 Painful - back up and restart deadlocked 
processes (hopefully, non-determinism will keep 
deadlock from repeating)

 Better - selectively kill deadlocked processes until 
cycle is broken

 Re-run detection alg. after each kill

 Tricky - selectively preempt resources until cycle 
is broken

 Processes must be rolled back



Reality Check

 No single strategy for dealing with deadlock 

is appropriate for all resources in all 

situations

 All strategies are costly in terms of 

computation overhead, or restricting use of 

resources

 Most operating systems employ the “Ostrich 

Algorithm”

 Ignore the problem and hope it doesn’t happen 

often



Why does the Ostrich Alg 

work?
 Recall causes of deadlock:

 Resources are finite

 Processes wait if a resource they need is unavailable

 Resources may be held by other waiting processes

 Prevention/Avoidance/Detection mostly deal with 
last 2 points

 Modern operating systems virtualize most physical 
resources, eliminating the first problem
 Some logical resources can’t be virtualized (there has to 

be exactly one), such as bank accounts or the process 
table

 These are protected by synchronization objects, which 
are now the only resources that we can deadlock on



What is atomicity?

 Recall ATM banking example:

 Concurrent deposit/withdrawal operation

 Need to protect shared account balance

 What about transferring funds between accounts?

 Withdraw funds from account A

 Deposit funds into account B

 Should appear as a single atomic operation

 Another process reading the account balances should see either 

both updates, or none

 Either both operations complete, or neither does



Why would atomicity fail?

 Suppose fund transfer is implemented by our known 

withdraw and deposit functions using locks.

Withdraw(acct, amt) {

acquire(lock);

balance = get_balance(acct);

balance = balance - amt;

put_balance(acct,balance);

release(lock);

return balance;

}

Deposit(acct, amt) {

acquire(lock);

balance = get_balance(acct);

balance = balance + amt;

put_balance(acct,balance);

release(lock);

return balance;

}

Transfer (acctA, acctB, amt) {

Withdraw (acctA,amt);

Deposit (acctB,amt;

}

 What can go wrong?



Definitions for Transactions

 Defn: Transaction

 A collection of operations that performs a single 

logical function and are executed atomically

 Here: a sequence of read and write operations, 

terminated by a commit or abort

 Defn: Committed

 A transaction that has completed successfully; 

 All operations took effect

 Once committed, a transaction cannot be undone

 Defn: Aborted 

 A transaction that did not complete normally

 None of the operations took effect



How to ensure atomicity in the 

face of failures?

Xct: begin

Read(A)

Read(B)

Read(C)

Write(A)

Write(B)

Write(C)

Xct: commit

Memory Disk

Failure can happen anytime

Write-ahead log

<T_i begins>

<A_old, A_new>

<B_old, B_new>

<C_old, C_new>

<T_i commits>

 Write intended operation to a log on stable storage

 Then execute the actual operation

 Log can be used to undo/redo any transaction, 

allowing recovery from arbitrary failures



Write-ahead logging

 Before performing any operations on the 
data, write the intended operations to a log
on stable storage

 Log records identify the transaction, the data 
item, the old value, and the new value

 Special records indicate the start and commit
(or abort) of a transaction

 Log can be used to undo/redo the effect of 
any transactions, allowing recovery from 
arbitrary failures



Problems with logging …

 Limitations of basic log strategy:

 Time-consuming to process entire log after failure

 Large amount of space required by log

 Performance penalty – each write requires a log 
update before the data update

 Checkpoints help with first two problems

 Periodically write all updates to log and data to 
stable storage; write a checkpoint entry to the log

 Recovery only needs to look at log since last ckpt.



Concurrent Transactions

 Transactions must appear to execute in some 

arbitrary but serial order

 Soln 1: All transactions execute in a critical section, 

with a single common lock (or mutex semaphore) 

to protect access to all shared data.  

 But most transactions will access different data

 Limits concurrency unnecessarily

 Soln 2: Allow operations from multiple transactions

 To overlap, as long as they don’t conflict

 End result of a set of transactions must be 

indistinguishable from Solution 1



Conflicting Operations

 Operations in two different transactions 

conflict if both access the same data item and 

at least one is a write

 Non-conflicting operations can be reordered 

(swapped with each other) without changing the 

outcome

 If a serial schedule can be obtained by swapping 

non-conflicting operations, then the original 

schedule is conflict-serializable



Conflict Serializability

 Is there an equivalent serial execution of T0 
and T1 ?

T0 T1

read(A)

write(A)

read(A)

write(A)

read(B)

write(B)

read(B)

write(B)



Conflict Serializabile?

T0 T1

read(A)

write(A)

read(B)

write(B)

read(A)

write(A)

read(B)

write(B)

T0 T1

read(A)

write(A)

read(B)

write(B)

read(A)

write(A)

read(B)

write(B)Yes
No



Ensuring serializability

 Two-phase locking

 Individual data items have their own locks

 Each transaction has a growing phase and 

shrinking phase:

 Growing: a transaction may obtain locks, but may not 

release any lock

 Shrinking: a transaction may release locks, but may 

not acquire any new locks.

 Does not guarantee deadlock-free



Example of 2 phase locking

Transaction_start

Lock(A)

Read(A)

Lock(B)

Read(B)

Lock(C)

Unlock(A)

Unlock(B)

Write(C)

Unlock(C)

Transaction_end

Growing

Shrinking



Timestamp Protocols

 Each transaction gets unique timestamp

before it starts executing

 Transaction with “earlier” timestamp must appear 

to complete before any later transactions

 Each data item has two timestamps

 W-TS: the largest timestamp of any transaction 

that successfully wrote the item

 R-TS: the largest timestamp of any transaction 

that successfully read the item



Timestamp Ordering
 Reads:

 If transaction has “earlier” timestamp than W-TS on data, 

then transaction needs to read a value that was already 

overwritten

 Abort transaction, restart with new timestamp

 Writes:

 If transaction has “earlier” timestamp than R-TS (W-TS) on 

data, then the value produced by this write should have been 

read (overwritten) already!

 Abort & restart

 Some transactions may “starve” (abort & restart 

repeatedly)



Deadlock and Starvation

 A set of threads is in a deadlocked state 

when  every process in the set is waiting for a 

event  that can be caused only by another 

process in the set

 A thread is suffering starvation (or indefinite  

postponement) if it is waiting indefinitely 

because other threads are in some way 

preferred



Communication Deadlocks

 Messages between communicating 

processes are a consumable resource

 Example:

 Process B is waiting for a request

 Process A sends a request to B, and waits for reply

 The request message is lost in the network

 B keeps waiting for a request, A keeps waiting for a 

reply, we have a deadlock

 Solution: Use timeouts and protocols to 

detect duplicate messages



Livelock

 Occurs when a set of processes continually retry 

some failed operation and prevent other 

processes in the set from making progress

 Functionally equivalent to deadlock

 Ex 1: two processes each request the same two 

spinlocks in the opposite order

 Each succeeds in first acquire, then spins

 CPU utilization is high, but no progress

 Ex 2: A set of processes retries a failed fork() 

 operation when the process table is full

 No process exits, so fork() keeps failing


