
 Page 1 of 17 Continued…

UNIVERSITY OF TORONTO

Faculty of Arts and Science

APRIL/MAY 2007 EXAMINATIONS

CSC 369H1S

Duration - 3 hours

Examination aids allowed: one 8.5 x 11" (letter-sized), double-sided "fact sheet"

from the student.

Name: ___

Student #: ___

Notes to students:
1. There are 10 questions and 16 pages in total (including this cover sheet and an extra page at

the back) for this exam.

2. Answer all questions directly on the examination paper. Generally, the space allowed is a

clue to the size of answer expected. Use the final page of the exam, or the backs of pages if

more space is needed, and provide clear pointers to your work.

3. Write your name and student number at the top of each page.

4. Show your intermediate work and BRIEFLY state your assumptions where appropriate.

5. Write clearly and legibly. If we can't read your answer, we can't grade it.

6. Read the questions carefully and answer the question that is being asked.

7. Good luck!

Question Marks Question Marks

1 / 12 6 / 10

2 / 18 7 / 12

3 / 18 8 / 15

4 / 12 9 / 12

5 / 9 10 / 20

Total: / 138

 Page 2 of 17 Continued…

1. True / False [12 points]

TRUE FALSE Operating systems rely on hardware support for memory protection.

TRUE
FALSE Kernel code can disable interrupts to make short critical sections atomic

on multiprocessors.

TRUE
FALSE

Starvation happens when some processes are continually preferred over

others.

TRUE FALSE Priority inversion happens when a low priority process prevents a high

priority process from making progress by holding some resource.

TRUE FALSE We study dynamic partitioning purely for historical reasons.

TRUE FALSE CLOCK is an example of a stack algorithm for page replacement.

TRUE FALSE Two-level page tables are an example of a space-time tradeoff.

TRUE
FALSE Opening a file using a hard link requires more disk accesses than opening

the same file using a symbolic link.

TRUE FALSE Disks are improving most rapidly in terms of seek time.

TRUE FALSE FFS performs synchronous writes for performance reasons.

TRUE FALSE RPC provides a general mechanism for writing distributed applications.

TRUE
FALSE

Good security protects a system against accidental attacks as well as

intentional ones.

 Name:____________________

Student #:____________________

 Page 3 of 17 Continued…

2. Acronym Bingo [18 points, 3 each]

For each of the following, (1) expand the acronym, (2) briefly explain what it is, and (3) state

whether it relates to an operating system policy or mechanism.

i) MMU

ii) FCFS

iii) PCB

iv) ACL

v) LRU

vi) SJF

Memory Management Unit – hardware device that performs memory access checks and

virtual-to-physical address translation.

Mechanism.

First Come First Served – a scheduling policy in which jobs are scheduled in the order that

they arrive.

Policy.

Process Control Block – software data structure used by operating system to keep track of

the state of a single process.

Mechanism.

Access Control List – a list associated with each object in a protection system (e.g. each file

in a file system) that contains the subjects (e.g. users) and the access permissions that they

have on the object (e.g. read/write/execute).

Mechanism.

Least Recently Used – a page replacement policy that selects the page whose last access is

farthest in the past (i.e., least recent) as the victim.

Policy.

Shortest Job First – a scheduling policy that selects the job with the smallest processing

requirement (i.e., the shortest one); minimizes average wait time but can cause starvation.

Policy.

 Name:____________________

Student #:____________________

 Page 4 of 17 Continued…

3. Miscellaneous Fill in the Blanks [18 points; 3 each]

(i) Consider a set of cooperating tasks, implemented as either a set of traditional single-threaded

processes, or as a set of threads in a multi-threaded process. For each of the following

operations, indicate whether it will be faster or easier overall if the tasks are implemented as

single-threaded processes (P), kernel-level threads (K), or user-level threads (U). Assume a

many-to-one mapping of user-level threads to kernel threads. If multiple options are equally

good, list all that apply.

 _U____ Creating new tasks

_P____ Preventing accidental modification of other tasks’ private memory (e.g.

stack)

_P,K__ Making blocking system calls

_U____ Switching between tasks

_P____ Creating a very large number of tasks

_U____ Customizing task scheduling

(ii) Fill in the following table by writing “I” if the combination of row and column headings for

that cell is impossible, or writing “P” if the combination is possible.

The first cell (first row, first column) represents “TLB hit and virtual page in memory”.

 Virtual page

in memory

Virtual page

not in

memory

Invalid

address

exception

TLB

Hit
P I I

TLB

Miss
P P P

(iii) Consider a system with a hardware-loaded TLB, which provides no software interface to

update entries. The only software options are to flush the TLB (invalidate all entries) or

invalidate a specific entry. For each of the following events, indicate whether the OS software

should flush the TLB (F), invalidate an entry in the TLB (I), or take no action with respect to the

TLB (N).

__N___ CPU interrupt

__F___ Context switch

__N___ System call other than fork or exec

__F___ fork, implemented with copy-on-write

__I___ copy-on-write fault

__I___ page eviction
This question continues

on the following page.

 Name:____________________

Student #:____________________

 Page 5 of 17 Continued…

(iv) For each of the following, indicate whether it relates more closely to a technique for

deadlock prevention (P), avoidance (A), or detection and recovery (D).

__A___ Determining safe and unsafe states

__P___ Requesting all resources at once

__D___ Constructing the resource allocation graph

__A___ the Banker’s Algorithm

__D___ Killing some or all processes involved in a cycle

__P___ Assigning a linear ordering to resource types

(v) For each of the following, indicate whether it improves performance mainly by increasing

throughput (T), decreasing response time (R), or both (B).

__R___ Using a short CPU scheduling quantum

__T___ Striping files across disks in a RAID (I decided to take “B” as well)

__T___ Using SSTF disk scheduling

__R___ Raising the priority of processes that block before using up their quantum

__B___ Caching file blocks in memory

__T___ Log-structured file systems (consider data writes specifically)

(vi) For each of the following, indicate whether it relates more closely to an attack on

confidentiality (C), authenticity (A), or integrity (I). The relation may be a either a type of

attack, or a defense against one of these attacks.

__C___ Eavesdropping

__A___ Digital Signatures

__C___ Message Encryption

__I___ Cryptographic checksums

__A___ Masquerade

__C___ Traffic Analysis

 Name:____________________

Student #:____________________

 Page 6 of 17 Continued…

4. Synchronization Problem: Message Passing [12 points]

Message passing implementations come in many forms. In one variant, called a rendezvous,

both sending and receiving a message are blocking operations. That is, a thread calling the

msg_send() function will block until the recipient calls msg_recv(). Similarly, if a thread calls

msg_recv(), it must block until some other thread calls msg_send(). When sending a message,

the intended destination must be specified, however, messages can be received from any source,

with the id of the sender returned along with the message.

To simplify the problem, we assume that messages are of a fixed length, MSG_LEN, and that

thread ids are chosen from a small range of integer values, [0..TID_MAX-1]. We define an array

of mailboxes, one per thread, indexed by thread id, to help implement the functions.

(i) [8 points] Complete the implementation of the message passing functions msg_send()

and msg_recv() on the following page. Remember that a thread may receive messages

from multiple senders. [You should at least read the partial implementation before

answering the following two questions.]

(ii) [2 points] What is the main advantage of using blocking sends and receives in this way?

No intermediate storage is needed to hold sent messages until the receiver is ready to receive

them.

Also acceptable: The sender knows the receiver has the message when it returns from send (or

else it has any error immediately, although the functions on the following page don’t return

errors), which may simplify programming since we don’t need to check separately that the

receiver got the message.

(iii) [2 points] What is the main disadvantage of using blocking sends and receives?

The sender must wait for the receiver before the message can be sent, instead of going on to

other work. The receiver also waits, but this may be less of a problem if we assume the receiver

needs to get the message before it can continue with its work anyway.

Also acceptable: less fault-tolerant, as sender will block forever if receiver dies or doesn’t ask to

receive message for any reason.

struct mailbox {

 char *dest_buf; /* set by receiver */

 int sender_id; /* set by sender */

 struct semaphore mutex; /* initialized to 1 */

 struct semaphore recvr_ready; /* initialized to 0 */

 struct semaphore sender_done; /* initialized to 0 */

};

struct mailbox mailboxes[TID_MAX];

This question continues

on the following page.

 Name:____________________

Student #:____________________

 Page 7 of 17 Continued…

/* Add the necessary calls to P() and V() on the mailbox semaphores.

You do not need to add code to every blank space. */

void msg_send(char *msg, int recvr_id) {

 struct mailbox *mbox = &mailboxes[recvr_id];

 /* mutex was an unintentional red herring. The recvr_ready

 * semaphore will serve the purpose of only allowing one

 * sender to copy its message into the provided buffer at

 * a time. Use of mutex is ok as long as it doesn’t cause

 * a deadlock.

 */

 /* wait for the receiver to set dest_buf */

 P(mbox->recvr_ready);

 memcpy(mbox->dest_buf, msg, MSG_LEN);

 mbox->sender_id = get_current_thread_id();

 /* signal that sender is done copying message and setting id */

 V(mbox->sender_done);

}

void msg_recv(char *msg, int *sender_id) {

 struct mailbox *mbox = &mailboxes[get_current_thread_id()]);

 mbox->dest_buf = msg;

 /* Signal sender that receiver is ready to get message */

 V(mbox->recvr_ready);

 /* Wait for sender to send message */

 P(mbox->sender_done);

 *sender_id = mbox->sender_id;

}

 Name:____________________

Student #:____________________

 Page 8 of 17 Continued…

5. Scheduling [9 points; 3 each]

(i) Explain the difference between a preemptive scheduler and a non-preemptive scheduler, and

give one example of the type of system where each might be used.

A preemptive scheduler will force a context switch upon certain events (time slice expires, higher

priority process becomes runnable, etc.) while a non-preemptive scheduler will wait for the

running process to voluntarily yield the CPU (blocking or exiting) before scheduling a new

process.

Preemptive systems: real time systems, time shared systems, interactive systems

Non-preemptive systems: batch systems, single-application systems (some embedded systems for

example) … some real-time systems are also non-preemptive, relying on cooperative scheduling

to meet deadlines, for greater predictability.

(ii) Are synchronization problems easier to solve when preemptive scheduling is used, or when

non-preemptive scheduling is used? Explain why.

Non-preemptive scheduling makes synchronization easier, because the execution of other

processes can’t interfere at arbitrary points. Any section of code that does not contain an

explicit yield, or a request that could block, automatically becomes atomic.

(iii) What is the main purpose of lottery scheduling?

Lottery scheduling provides a way to implement fair share scheduling; the number of tickets a

process holds is proportional to the share of the CPU it should be allocated. It allows a very

flexible division of CPU between processes belonging to different users or groups.

 Name:____________________

Student #:____________________

 Page 9 of 17 Continued…

6. Replacement Algorithms [10 points]

(i) [4 points] Describe a specific situation where LRU replacement (or any reasonable

approximation of it) will maximize the page fault rate for an application. Refer to the application

data access pattern, its working set size, and the size of available memory in your answer.

LRU is bad for looping access patterns (where the same set of data is accessed repeatedly in the

same order) when the working set site (i.e. the amount of data accessed in the loop) is larger

than the available memory. [The page fault rate for the application will be the same regardless

of how much larger the working set is than the available memory]

(ii) [6 points] Consider a new replacement algorithm called Most Recently Used (MRU), which

evicts the most recently used page. MRU is attractive because it handles the cases where LRU is

the worst possible algorithm. (a) Explain why exact MRU is unsuitable for virtual memory

systems, even if you had a fast, cheap way to determine the MRU page order. (b) Explain why

this problem does not arise if you want to use MRU for file buffer cache replacement.

 Name:____________________

Student #:____________________

 Page 10 of 17 Continued…

In virtual memory systems, data on pages is always accessed by at most a word at a time. Thus

the MRU page is likely to still be in use when the replacement is performed, and the process will

immediately fault on the page that was replaced too soon. [What is wanted is the MRU page

that is no longer in use, but that is very hard to determine.] The situation is different for the file

buffer cache because accesses happen on a block basis – data read is copied from the buffer

cache to an application-level buffer for example – so after the access completes the block is no

longer in use and can be replaced. [Note that it is possible for an application to read/write a file

at a very fine granularity, making the problem identical to the virtual memory system, but at

least this is under the application’s control.]

 Name:____________________

Student #:____________________

 Page 11 of 17 Continued…

7. File Systems [12 points; 4 each]

Consider a Unix-like file system that maintains a unique index node for each file in the system.

Each index node includes 8 direct pointers, a single indirect pointer, and a double indirect

pointer. The file system block size is B bytes, and a block pointer occupies P bytes.

(i) Write an expression for the maximum file size that can be supported by this index node, in

terms of B and P.

- 8 direct data blocks, each of size B  8B

- 1 indirect block of size B, holding B/P pointers to data blocks of size B  B B/P

- 1 double indirect block of size B, holding B/P pointers to indirect blocks, each with B/P

pointers to data blocks of size B

(ii) How many disk operations will be required if a process reads data from the Nth block of a

file? Assume that the file is already open, the buffer cache is empty, and each disk operation

reads a single file block. Your answer should be given in terms of N, B, and P.

(iii) As a general rule, the internal structure of the data in Unix files is defined by user code and

not known to the kernel (or file system). There are three key exceptions to this rule: directories,

symbolic links, and executables. Pick any two and explain how each one is an exception to the

rule and why this exception exists.

1) directories are an exception because their internal structure (directory entries) is defined by

the file system and used by the file system to locate files given file names.

2) symbolic links are an exception because their content is expected to be a path (string) giving

the real name of the file to which the link points. This must be known and understood by the file

system in order to resolve symbolic links.

3) executables are an exception because the kernel must know the internal format to load an

executable into an address space (e.g. knowing size and start location of code and data sections)

to that the program can be run.

 Name:____________________

Student #:____________________

 Page 12 of 17 Continued…

8. Distributed File Systems [15 points; 3 each]

Consider a distributed file system accessed by multiple clients. File system data can be cached

in server memory, in client memory, or on client disk (or some combination of these).

(i) Briefly describe at least three (3) distinct factors that need to be considered when deciding

where to cache file data.

A) How will files be shared? If different clients never share the same files, little benefit to server

caching. If write sharing is common, client caching may be undesirable.

B) What are the consistency requirements? If we need strict Unix local FS semantics, client

caching may be undesirable.

C) What is the client configuration? Do they have large memories? Are they diskless?

D) Scalability – how many clients must the server support?

E) What are the network characteristics? (i.e., bandwidth, latency, likelihood of connection

failure)

F) What are the file/application characteristics? Are files large or small? Read sequentially or

randomly? Frequently updated? Dynamic content generated by server?

For each of the following scenarios, describe where files should be cached and why.

(ii) A system that supports disconnected operation.

Client disk – allows client to continue using files when server is unreachable; client memory is

unsafe because we might not be able to flush modifications back to server for a long time, and

RAM is volatile.

(iii) A system that provides a video-on-demand service.

Extra assumptions are needed here. Popular movies are likely to be requested by multiple

clients making server memory a good choice. Caching in client memory could facilitate a

rewind feature, but if the service does not allow rewind, then client caching is pointless. Client

disk can similarly be used for rewind with a larger coverage (i.e., can rewind farther, start from

beginning, etc.) but depending on network and server characteristics, re-fetching from server

may be faster than the client disk. Also, for digital rights management, service providers may be

uncomfortable with caching on client disk.

This question continues

on the following page.

 Name:____________________

Student #:____________________

 Page 13 of 17 Continued…

(iv) A web server that provides mostly static content.

All three should be used. Web servers expect their content (particularly static content) to be

accessed by many clients, so we should definitely cache in server memory. Clients browsing the

web site will often visit the same pages multiple times in a short time period, so we want to keep

the most recently visited pages in client memory. However, clients will also often visit the same

web sites / pages repeatedly over extended periods of time (days or weeks), so caching on client

disk is also a good idea.

(v) A system with a very small number of file servers and a very large number of clients.

Client caching is critical to reduce the load on the servers, client disk or client memory doesn’t

really matter. The servers should also do caching to reduce the service time for frequently-

requested files.

 Name:____________________

Student #:____________________

 Page 14 of 17 Continued…

9. Security [12 points; 4 each]

(i) Explain what is meant by security through obscurity, and why it tends to be a bad idea. Give

one example of a security system that used this strategy and failed.

Attempting to gain security by hiding implementation details. This tends to be a bad idea

because the details often don’t stay hidden (reverse engineering, social engineering, or a

combination exposes them) and the security is compromised.

Example 1: GSM cell phones

Example 2: eBooks (Adobe and others)

Example 3: DVD encryption

(ii) Explain the principle of complete mediation, and describe the general category of security

flaws that result when the principle is not followed, including the name given to this type of bug.

You must check permissions on every access to every object to ensure that nothing has changed

since the check was performed. Ignoring this principle leads to “Time of check to time of use”

bugs (aka TOCTTOU), which are in reality race conditions that can be exploited by an attacker.

(iii) Define the term intrusion detection, and describe one method for providing it.

Techniques for determining when a system has been compromised.

One method: signature-based detection, in which signatures of known attacks are constructed

and system activity is monitored to see if it matches a known signature. (low false positives,

hard to defend against new/unknown attacks)

Another method: anomaly-based detection, in which system activity is monitored to establish a

baseline “normal” behavior, and significant deviations are flagged as intrusions. (high false

positives, better able to deal with new attacks)

 Name:____________________

Student #:____________________

 Page 15 of 17 Continued…

10. Paging and OS/161 [20 points]

Modern operating systems use a separate paging thread to select pages for eviction and maintain

a pool of free physical memory pages. The main disadvantage of this approach is that pages may

be freed while they are still needed, increasing the number of page faults.

(i) [2 points] What is the main advantage of using such a paging thread?

Page fault handling can be much faster because we do not incur the overhead of running our

page replacement algorithm to select a victim, and the overhead of writing dirty victims to disk

on every page fault. We can amortize this cost across a large number of evictions, and we can

do it in the background when no process is waiting for the eviction to complete before it can

make progress

(ii) [2 points] How does a modern OS reduce the cost of the extra page faults caused by freeing

physical memory pages early?

If a process faults on a freed page, and the page frame has not been reallocated to a different

process, then the same page frame is reallocated to the original owner avoiding the cost of

reading the page contents back in from disk.

Suppose a paging thread were added to OS/161. Describe the following in words, making

specific reference to existing OS/161 data structures:

(iii) [4 points] What changes to existing data structures are needed to allow a paging thread to

free physical pages, while supporting the standard OS technique for reducing the cost of extra

page faults? For full marks, do not increase the size of existing structures, or add any new data

structures.

Mainly, we need a way to distinguish a truly invalid virtual page (one that requires a new page

to be allocated and data read in from disk) from one that has been freed, but could still be

“rescued” or reclaimed. We can borrow another bit from the low-order part of the lp_paddr

field in the lpage structure, similar to the lpage lock and dirty bits, e.g. #define LP_FREED 0x4

Nothing else is needed, although we will need to change how we update/modify the existing fields

as well.

This question continues

on the following page.

 Name:____________________

Student #:____________________

 Page 16 of 17 Continued…

For each of the following, focus on how data structures are updated and ignore

synchronization concerns.

(iv) [4 points] What happens when the paging thread frees a physical memory page?

We need to set the LP_FREED flag in the lp_paddr field, but NOT set the lp_paddr to

INVALID_PADDR (the current behavior). We also need to mark the page free in the coremap,

but NOT clear the pointer to the lpage in the coremap entry (because if the page is allocated to a

different process or virtual page, we will need to update the lpage again, marking it truly invalid

this time). We can interpret a coremap entry marked free with a non-NULL lpage as a freed

page that might still be needed by its previous owner.

(v) [4 points] What happens when a freed page is reallocated to hold a different virtual page?

If we allocate a freed page with a non-NULL lpage pointer, we must mark the lp_paddr field in

the lpage as INVALID_PADDR, so that a subsequent fault on the lpage will get a fresh page

frame and read the missing data in from disk.

(vi) [4 points] What happens when a process faults on a virtual page and the physical page to

which it was previously mapped has been freed by the paging thread but not yet reallocated?

If the lp_paddr field has the LP_FREED bit marked, we can use the rest of the lp_paddr field to

locate the coremap entry for the page frame and mark that frame as allocated again. We then

clear the LP_FREED bit and proceed with updating the TLB as if we had faulted on a page that

was valid.

 Name:____________________

Student #:____________________

 Page 17 of 17 Continued…

Extra Space – Use if needed. Indicate clearly what questions you are answering here.

Bonus: 2 marks – Hand in your info sheet (make sure your name and student number is on

it) with your final exam.

End of Exam

Total Pages = (16)

Total Marks = (138) (not counting bonus)

