
CSC C69H1 F
OPERATING SYSTEMS

UNIVERSITY OF TORONTO

FALL 2003

Midterm Test

NO AIDS ALLOWED

Please PRINT in answering the following requests for information:

Family Name: _________________________________

Given Names: _________________________________

Student Number: |_ _ _| |_ _ _| |_ _ _|

Login (@fissure): ____________________

Notes to students:

1. This test lasts for 60 minutes and consists of 50 marks. Budget your time accordingly.
2. This test has 6 pages and 5 questions.
3. Write in pen. No pencils.
4. Write your answers on this “question and answer” paper, in the spaces provided. Be concise. In

general, the amount of space provided is an upper bound on the “size” of answer that is expected.
If necessary, use space where available and provide explicit pointers.

5. In general, state your assumptions and show your intermediate work, where appropriate.

6. Do not go beyond here until instructed to do so. Write your student number at the top of each
succeeding page once you get going.

Question Marks

1
2
3
4
5

Total

../continued

CSC C69H1 F, Fall 2003, Midterm Student Number: |_ _ _| |_ _ _| |_ _ _| 2

1. [10 marks, 2 each] True/False

Circle “T” if the statement is always true. Otherwise circle “F”.

a) Multiple threads in the same process share all code and data resources

b) Hardware support is needed to synchronize more than two processes.

c) It is possible for a single process to deadlock with itself.

d) Minimizing turnaround time is the most important criteria in choosing a
scheduling algorithm for an interactive system.

e) With dynamic partitioning, all memory allocated for a process must be
contiguous.

T / F

T / F

T / F

T / F

T / F

2. [9 marks; 3 each]
Define the following terms in the context of this course:

(a) Aging:

(b) Compaction

(c) Multiprogramming

 ../continued

CSC C69H1 F, Fall 2003, Midterm Student Number: |_ _ _| |_ _ _| |_ _ _| 3

3. [12 marks; 6 each] Consider the following program to
demonstrate the operation of pthread_create and pthread_join. The pthread_join
function blocks the calling thread until the specified thread has exited. If the thread
has already exited at the time pthread_join is called, the caller continues execution
without blocking. Assume the existence of a “pthread_attr_setpriority” function which
allows the priority for a new thread to be specified. Assume also that higher numbers
correspond to higher priorities, and that all printf statements are executed without
blocking the caller

int main() {
 pthread_t t;
 pthread_attr_t attr;

 pthread_attr_init(&attr);
 pthread_attr_setpriority(&attr,10);
 printf(“bam “);
 pthread_create(&t, &attr, A, 0);
 printf(“baf “);
 pthread_join(t, 0);
 printf(“blam “);
 pthread_exit(0);
}

void *A(){
 pthread_t t2;
 pthread_attr_t attr2;

 pthread_attr_init(&attr2);
 pthread_attr_setpriority(&attr2, 20);
 printf(“umph “);
 pthread_create(&t2, &attr2, B, 0);
 printf(“ugh “);
 pthread_join(t2, 0);
 printf(“urk “);
 pthread_exit(0);
}

void *B() {
 printf(“krak “);
 pthread_exit(0);
}

(a) Assume that the scheduler runs threads using a FCFS policy, ignoring priorities. What
will the program above print out?

(b) Assume that the scheduler runs threads using a preemptive priority policy, and that the
priority of the “main” thread is 0. What will the program above print out now?

../continued

CSC C69H1 F, Fall 2003, Midterm Student Number: |_ _ _| |_ _ _| |_ _ _| 4

4. [8 marks; 4 each]
The buddy system is a method to do memory allocation, as described below.

Given a memory space of 2m words, we maintain a separate free list for each block
size 2k, where 0 ≤ k ≤ m. If a block of size s is requested such that 2i < s ≤ 2i+1,
then a block of size 2i+1 will be allocated. Originally, there is one free block of size
2m words.
 To allocate a block of size 2k, we find the first available block of size 2j, such
that k ≤ j ≤ m . If j = k, then we are done. Otherwise we split the block into two
equally-sized buddies which are both placed on the appropriate free list. The
search and split repeats until j = k. Appropriate coalescing is done upon return of a
used block.

a) Describe where external fragmentation is present in this scheme.

b) Describe where internal fragmentation is present in this scheme.

 ../continued

CSC C69H1 F, Fall 2003, Midterm Student Number: |_ _ _| |_ _ _| |_ _ _| 5

5. [11 marks; breakdown given below]
You have been hired as an OS consultant to solve a problem with a client’s system. Their OS
has a set of queues, each of which is protected by a lock (implemented as a
pthread_mutex_t). To enqueue or dequeue an item, a thread must hold the lock associated
with the queue.
 They have implemented an atomic transfer routine that dequeues an item from one queue
and enqueues it on another. The client requires that the transfer appear to occur
atomically. The transfer routine is being used extensively throughout their multithreaded
system, and may be called by many different threads with any of the system queues as
inputs.
 Unfortunately, their first attempt, shown below, causes the system to deadlock.

void transfer(Queue *queue1, Queue *queue2)
{
 Item *thing; /* the thing being transferred */
 pthread_mutex_lock(&queue1->lock);
 thing = Dequeue(queue1);
 if (thing != NULL) {
 pthread_mutex_lock(&queue2->lock);
 Enqueue(queue2, thing);
 pthread_mutex_unlock(&queue2->lock);
 }
 pthread_mutex_unlock(&queue1->lock);
}

You have already verified that the Enqueue and Dequeue functions are correct, that the
synchronization variables have all been initialized properly, and that the transfer function is
never called with the same queue for both inputs (that is, the client has guaranteed that
transfer(queueA, queueA) will never occur).

(a) [5 marks] Demonstrate how the use of the transfer function can lead to deadlock.

../continued

CSC C69H1 F, Fall 2003, Midterm Student Number: |_ _ _| |_ _ _| |_ _ _|

 ../continued

6

(b) [2 marks] Which of the 4 conditions for deadlock could be easily removed to fix this
problem?

(c) [3 marks] Briefly describe (in words) how you would solve the problem.

(d) [1 mark] Which of the 3 strategies for dealing with deadlock does your solution use?

Total marks = (50)
End of test

