Page 1 of 8

UNIVERSITY OF TORONTO

Spring 2010 Midterm Test
Course: CSC 369 H1S

Instructor: Angela Demke Brown

Duration: 50 minutes
Aids allowed: none

Last Name:

Given Name:

Student Number:

This midterm test consists of 5 questions on
10 pages (including this one and two scrap
pages). When you receive the signal to start,
please make sure that your copy of the test is
complete.

If you need more space for one of your
solutions, use the last pages of the test and
indicate clearly the part of your work that
should be marked. We have been careful to
leave enough space for your answers.

In written answers, be as specific as pos-
sible and explain your reasoning. Clear,
concise answers will be given higher marks
than vague, wordy answers. Marks will be
deducted for any incorrect statements in
an answer. Please make your handwriting
legible!

MARKING GUIDE

#1. /8
#2 /12
#3_ /8
#4: /10
45 /12

TOTAL: /50

CONTINUED ON PAGE 2

8 marks

1 mark

1 mark

1 mark

1 mark

1 mark

1 mark

1 mark

1 mark

CSC369H1S MIDTERM EXAMINATION, MARCH 2010 — SOLUTIONS Page 2 of 8

Question 1. Very Short Answer

Each of the questions below should be answered with a couple of words or one sentence.

Part (a) What is the primary hardware mechanism that allows operating system kernels to be
protected from user processes?

mode bit (or some mention of privileged / unprivileged modes of execution)

We gave 1/2 for MMU or memory protection, but you also need a way of preventing user code from

modifying the memory permissions.

Part (b) The operating system maintains a data structure to represent each thread. List
two items (give a general description, not the OS/161 variable names) that would appear in this
structure.

thread / process id, current state (running, blocked, etc), scheduling priority, pointers to link thread
onto queues... lots of other possibilities

Part (c) What is the main problem with using an atomic hardware instruction like “test-and-set”
to implement a lock_acquire function on a uniprocessor?

busy waiting [we also gave part marks for noting that this leads to non-portable code, but that is
not the main problem./

Part (d) TRUE/FALSE: Some synchronization problems that can be solved with a monitor
cannot be solved using only semaphores.

FALSE. Monitors and semaphores have equal power for solving synchronization problems. (only
need to say TRUE or FALSE)

Part (e) What does it mean for the exec system call to return?

It means the exec failed. On success, a new program starts executing.
Part (f) Name two scheduling algorithms that can cause starvation.
Shortest Job First, Priority

Part (g) Define the term conflict-serializable.

concurrent transactions appear to complete in some serial order

Part (h) TRUE/FALSE: A dynamic partitioning system with load-time address binding can
use compaction to deal with external fragmentation.

FALSE (load-time address binding does not permit dynamic relocation, which is needed for com-
paction,).

CONTINUED ON PAGE 3

12 marks

3 marks

3 marks

CSC369H1S MIDTERM EXAMINATION, MARCH 2010 — SOLUTIONS Page 3 of 8

Question 2. Short Answer
Each of the questions below should be answered with a paragraph or a diagram.

Part (a) What is the main difference between an interrupt (e.g. a timer interrupt) and an
exception (e.g. a system call)? In what way are they the same?

Interrupts are caused by something outside the currently executing thread/process. In other words,
they are asynchronous with respect to the thread’s execution and could happen at any arbitrary
point. FExceptions are caused by something the thread/process did itself and happen at the precise
point when the causing instruction was executed (e.g. syscall instruction, divide-by-zero, bad address
reference). They are the same because both cause the executing process to enter kernel mode, save
its state, and handle the interrupt or exception.

Part (b) In Exercise 1 you created several threads that concurrently ran a loop in which they
first incremented and then decremented a shared variable counter without any synchronization,
as follows:

for (i = 0; i < niters; i++) {
counter++;
counter—-;

We observe the following on a Linux system: When niters=1000, on a uniprocessor the final value
of counter is almost always the same as its initial value regardless of the number of threads used,
but on a multiprocessor different final values for counter are frequently observed. Explain this
result.

On a uniprocessor, we can only get inconsistent results if the scheduler switches to another thread
while a thread is in the middle of an update. With a small number of iterations, the thread is
likely able to complete its entire loop in a single scheduling quantum without interruption. On
a multiprocessor, threads truly run concurrently so there are many more opportunities for bad
outcomes.

CONTINUED ON PAGE 4

8 marks

8 marks

CSC369H1S MIDTERM EXAMINATION, MARCH 2010 — SOLUTIONS Page 4 of 8

Part (c) One strategy for deadlock prevention is to break the “no pre-emption” condition.
Identify one type of resource for which this works, and one type of resource for which it does not.
Explain briefly.

Works: CPU, memory. Does not work: printer, CD burner. In general, it works if we can save
the state of the preempted resource and restore it later when it is returned to the original owner.
It does not work if the resource has some state that cannot be saved and restored or the operation
cannot be rolled back and restarted.

Part (d) Suppose we have a dynamic partitioning system with 15 units of memory. Sketch the
memory space after the sequence of events below. Label (i) allocated space showing the request it
belongs to, (ii) free space, and (iii) external fragmentation. Assume that a first-fit allocation policy
is used:

1. Allocate 4 units for P1
2. Allocate 4 units for P2
3. Allocate 3 units for P3
4. Free P2’s allocation

5. Allocate 3 units for P4

P1

P1

P1

P1

P4

P4

P4

free (external frag)

P3

P3

P3

free

free

free

free

CONTINUED ON PAGE 5

8 marks

4 marks

4 marks

CSC369H1S MIDTERM EXAMINATION, MARCH 2010 — SOLUTIONS Page 5 of 8

Question 3. Deadlock

A system has 4 processes (pl, p2, p3, p4) and 3 types of resources (R1, R2, R3). There are 3 units
of R1, 2 units of R2 and 2 units of R3. At a particular point in time the following requests and
allocations exist:

e pl holds 1 unit of R1 and requests 1 unit of R2
e p2 holds 2 units of R2 and requests 1 unit of R1 and 1 unit of R3
e p3 holds 1 unit of R1 and requests 1 unit of R2

e p4 holds 2 units of R3 and requests 1 unit of R1

Part (a) Complete the resource allocation graph below. Nodes for the resource types have been
drawn already (dots within a resource node indicate instances of the resource type).

R1 /. \Rz R3

\@/
&

We were mainly looking for the conventions for drawing a resource allocation graph: (i) processes
shown as circles, (ii) resource allocation shown as an arrow from resource to process and (iii)
ungranted request shown as an arrow from process to resource. Finally, you needed to show all of
the requests and allocations on the graph.

Part (b) Both p2 and p4 have made a request for the last instance of R1. Does it matter
which process is allocated this resource instance? Explain your answer, describing the outcome
of both options.

Yes it matters. If p2 is granted the last instance of R1, then we have a deadlock since p2 is waiting
for an instance of R3, both of which are held by p4, and p4 is waiting for an instance of R1. All
instances of R1 are held by processes which are also blocked — p2 is blocked waiting for p4 to release
R3 and both p1 and p3 are blocked waiting for p2 to release R2.

If p4 is granted the last instance of R1 the system can still make progress. since p4 has all the
resources it needs, it will eventually complete, releasing its instance of R1 and both instances of RS.
Then the outstanding requests for p2 can be granted, p2 will eventually complete and release R2,
allowing p1 and p3 to finish.

CONTINUED ON PAGE 6

10 marks

3 marks

3 marks

3 marks

1 mark

CSC369H1S MIDTERM EXAMINATION, MARCH 2010 — SOLUTIONS Page 6 of 8

Question 4. CPU Scheduling

Schedule the three threads shown in the table below. Priorities are fixed with higher numbers
corresponding to higher priorities. A timer interrupt occurs at the beginning of each time
interval and the scheduler chooses the next thread to run (possibly allowing the current one to
continue running). Scheduling decisions are only made as part of handling the timer interrupt.
Assume that no time is required to choose the next thread and switch to it.

Process | Arrival Time | Service Time | Priority
A 0 10 7
B 2.5 5 15
C 4.5 2 3

Part (a) Round Robin (RR), time quantum = 2

O 11234567 8 910111213 /14|15]16
AIAIAJAIBIBIAJA|C|C|B/B/AJA|B AA

Common errors included starting a new process as soon as it arrived, rather than waiting for the
expiry of the current process’s quantum, and scheduling C before A in the 4th quantum (7th time

interval). A entered run queue at T = 4 when its quantum expired, and C entered on arrival at
T =4.5, so A is ahead of C.

Part (b) Priority Scheduling (PRI):

O 1234567 8 9/10[11}1213/14|15]16
AIAJAIB/B|B/B|IB/AJAJ]A/A/AJA|A C|C

The only common problem was reversing the priorities (so that C had highest priority and B lowest).

Part (c) Shortest Remaining Processing Time (SRPT):

O 1] 2 3/4]5]6 78 9/10/11/12/13|14|15|16
AlAJIA/IB|B|[C|C|IBIBIB/AJ]ATAJ/AAA A

The most common problem was using shortest-job-first, which is non-preemptive (so A runs to
completion, then C, then B).

Part (d) If the time to perform a context switch is non-zero, which of these scheduling algorithms
has the lowest overhead for this set of threads?

The lowest overhead is simply the one with the fewest context switches, which is PRI (3 switches).
The most common error was to misinterpret overhead as average wait time.

CONTINUED ON PAGE 7

12 marks

2 marks

CSC369H1S MIDTERM EXAMINATION, MARCH 2010 — SOLUTIONS Page 7 of 8

Question 5. Synchronization and Threading

The Ontario government is considering allowing online gambling. The company WeNeedsCash, has
decided to get into the marketplace quickly and establish a customer base. They have launched
a web service that allows customers to create an account, deposit funds using a credit card, and
then play the WeNeedsCash game by clicking a button labeled “SHOW ME THE MONEY!” Every
button click debits their account by $1, until it reaches zero. Since there is no actual gambling,
they do not need to wait for government approval.

The initial implementation of the server uses a single thread. Each click on the “SHOW ME THE
MONEY” button results in a request that is handled by a function call to show_money(account),
where account refers to a data structure representing the user’s account. C code for the account
structure and the show_money function are shown below:

1. struct account.s {

1.1 struct lock *1; /* exact syntax for locks used is not important */
2. unsigned int balance;

3 char *username;

4.}

5. int show money(struct account_s *account) {

5.1 int new_balance;

5.2 lock_acquire(account->1);

6. if (account->balance > 0) {

7. account->balance = account->balance-1;

8. }

8.1 new_balance = account->balance;

8. lock_release(account->1);

9 return new_balance; /* modified return statement */

N
o -
—

Part (a) You are hired as the software quality control expert for WeNeedsCash. Do you find
any potential data races in the code? Explain your answer.

Since the server is single-threaded, there is no possibibility of a race condition. (Races happen when
2 or more threads access shared data without synchronization and at least one of the accesses is a
write.)

The WeNeedsCash site becomes wildly popular, and the single-threaded server is taking too long
to respond to client requests, limiting profits. The company rushes to fix the problem with the
purchase of a 128-CPU multiprocessor for the server and a new multithreaded implementation. For
each click request, the main server thread now creates a new thread which runs show_money and
then exits. To save time, they don’t bother with a software quality review before deploying the
new system.

Jerry Jackpot has two computers and plays the WeNeedsCash game simultaneously on both using
the same account. His account balance is nearly at zero. Clicking madly on “SHOW ME THE
MONEY?” on both screens, he notices that his balance has suddenly jumped to over 4 billion dollars!

Panicked WeNeedsCash executives now call for a code review.

CONTINUED ON PAGE 8

4 marks

4 marks

2 marks

CSC369H1S MIDTERM EXAMINATION, MARCH 2010 — SOLUTIONS Page 8 of 8

Part (b) Explain Jerry’s good fortune. Show a simple scenario involving two threads, T1 and
T2, simultaneously executing show_money that illustrates how a huge account balance could result.

Assume Jerry’s account balance is $1. T1 and T2 concurrently evaluate the condition on line 6
on different processors, and since the balance is 1, both T1 and T2 proceed to line 7. T1 now
decrements the balance and stores 0 as the result. T2 now reads the new balance of 0 and subtracts
1. Howewver, since balance was declared as “unsigned int”, it cannot store the value “17. Instead
underflow results and it gets the twos-complement bit pattern of -1 (all bits set to 1), which is
232 _ 1, or over 4 billion as an unsigned value.

Part (c) Add synchronization to the code to prevent the problem. Show your changes beside
the existing code, numbering your lines to clearly indicate where they should go (e.g. a line of
code that should go between lines 2 and 3 would be numbered 2.1). Remember that WeNeedsCash
wants to handle requests as quickly as possible, but without losing money!

Important things we were looking for were: (i) use of a per-account lock (or binary semaphore) so
that operations on different accounts could proceed concurrently, (ii) treating lines 6-8 as a single
critical section (so the lock is acquired before line 6 and released after line 8). To ensure each
call to show_money returns the result of its own operation, there should really be a local variable
assigned the result within the critical section, and a return of that variable rather than returning
account-sbalance. However, this last point does not relate to the “huge account balance” race that
you were asked to fix, so we did not award or deduct any points for it.

WeNeedsCash has heard complaints from customers that the new service is no faster than the old
one. Measurements of customer response time show that the new system is actually SLOWER
than the original. They repeat the tests with the new synchronization code removed and get
similar results (slower than the original single-threaded implementation). They try both user-level
and kernel-level thread implementations but still are unable to obtain a speedup over the original
version.

Part (d) Explain why multithreading cannot speed up their code.

In the original single-threaded version, the main server thread had to make a function call that
performed one test and one arithmetic operation for each request. In the multi-threaded version,
the main server thread has to create a new thread for each request. The time to handle any request
is now the time to create the thread plus the time to erecute show_money. Although the show_money
operations can be done in parallel, the thread creation is still handled by a single thread, and even the
most efficient thread implementation will be more expensive than the simple show_money function.
In other words, the overhead of thread creation outweighs the benefit of using multiple processors.

END OF SOLUTIONS

