
CSC 369H1 F
OPERATING SYSTEMS

UNIVERSITY OF TORONTO

FALL 2003

Midterm Test

NO AIDS ALLOWED

Please PRINT in answering the following requests for information:

Family Name: _________________________________

Given Names: _________________________________

Student Number: |_ _ _| |_ _ _| |_ _ _|

Login (@cdf): ____________________

Notes to students:

1. This test lasts for 50 minutes and consists of 50 marks. Budget your time accordingly.
2. This test has 7 pages and 5 questions; Check that you have all pages before starting.
3. Write in pen. No pencils.
4. Write your answers on this “question and answer” paper, in the spaces provided. Be concise. In

general, the amount of space provided is an upper bound on the “size” of answer that is expected.
If necessary, use space where available and provide explicit pointers.

5. In general, state your assumptions and show your intermediate work, where appropriate.
6. Do not go beyond here until instructed to do so. Write your student number at the top of each

succeeding page once you get going.

Question Marks

1
2
3
4
5

Total

../continued

CSC 369H1 F, Fall 2003, Midterm Student Number: |_ _ _| |_ _ _| |_ _ _| 2

1. [10 marks, 2 each] True/False

Circle “T” if the statement is always true. Otherwise circle “F”.

a) In paging systems, external fragmentation cannot occur.

b) Race conditions cannot occur on a uniprocessor.

c) SJF can be implemented as a priority algorithm, where the priority is
determined by the arrival time of the job.

d) A process in the Ready state can only transition to Running or Exit
states.

e) The two-phase locking protocol guarantees that concurrent transactions
are deadlock-free.

T

F

F

T

F

 ../continued

CSC 369H1 F, Fall 2003, Midterm Student Number: |_ _ _| |_ _ _| |_ _ _| 3

2. [9 marks; 3 each]
Define the following terms in the context of this course:

(a) Starvation:

A condition in which a process is blocked indefinitely because another process is always given
preference. May occur because of priority scheduling, or unfair synchronization algorithms.

(b) Page Frame

A fixed-size block of physical memory used in paging systems to hold parts of a process’s
address space. Frames are identical; any frame can be used to hold any page for any
process.

(c) Turnaround Time

The difference between the time at which a process arrives, and the time at which it
completes.

../continued

CSC 369H1 F, Fall 2003, Midterm Student Number: |_ _ _| |_ _ _| |_ _ _| 4

3. [10 marks; 2 each] Measurements of a certain system have
shown that the average process runs for a time T before blocking on I/O. A process
context switch requires a time S, which is effectively wasted (overhead). The
performance measure of interest is CPU efficiency, defined as the ratio of useful CPU
time over total CPU time. For round-robin (RR) scheduling with a quantum of length Q,
give a formula for CPU efficiency in each of the following cases (be as specific as
possible, give a range if appropriate):
 a) Q = ∞

No involuntary context switches will occur. Each process will pay 1 context switch per CPU
burst. Useful = T, Total = T + S

 Efficiency = T / (T + S)

 b) Q > T

As long as the quantum Q is larger than T, then no involuntary context switches will occur.
Same as (a).

 Efficiency = T/(T+S)

 c) S < Q < T

Average process will have T/Q context switches per CPU burst, each with a cost S. Useful
time is still T, Total is T + S*T/Q.

 Efficiency = T/(T+ST/Q) = 1/(1 + S/Q)

Since S < Q, S/Q is < 1 and efficiency falls in the range (0.5, 1) or 50-100%

 d) Q = S

Starting with the equation from C, the efficiency is now exactly 0.5

 e) Q nearly 0 (or tending to 0)

Again use the equation from C, but as Q approaches zero, S/Q approaches infinity and the
efficiency approaches 0.

 ../continued

CSC 369H1 F, Fall 2003, Midterm Student Number: |_ _ _| |_ _ _| |_ _ _| 5

4. [10 marks; breakdown as given below]

Consider a dynamic partitioning system in which memory consists of the following holes,
sorted by increasing memory address (all sizes are in Kilobytes):

10 4 18 9 20 7 12 15

 Hole created by last allocation

(a) [8 marks] Suppose a new process requiring 11 kB arrives, followed by a process
needing 9 kB of memory. Show the list of holes after both these processes are placed in
memory for each of the following algorithms (start with the original list of holes for each
algorithm).

i) First Fit:
The first request fits in hole of size 18, leaving behind a 7kB hole. The second requests starts
over at the beginning of the list and fits in the first hole, leaving behind a 1kB hole.

1 4 7 9 20 7 12 15

ii) Worst Fit:
The largest available hole is always used. First requests takes the 20kb hole and leaves a 9kB
hole behind. Second request takes the 18kB hole and leaves a 9kB hole behind.
 10 4 9 9 9 7 12 15

iii) Best Fit:
The 12kB hole is the best fit for the first request, leaving a 1kB hole behind. The 9kB hole is
the best fit for the second request, which consumes the hole entirely.

10 4 18 20 7 1 15

iv) Next Fit:
Search begins where the last search finished. The 4kB hole was created by the last allocation, so
that is where we start. The first request is placed in the 18kB hole, leaving a 7 kB hole behind.
The search for the second request begins at this point and finds a 9kB hole which is consumed
entirely.
 10 4 7 20 7 12 15

(b) [2 marks] Keeping the hole list sorted by size can make some of the allocation
algorithms faster. State one advantage of keeping the list sorted by address instead.

When blocks are freed, we would like the ability to coalesce adjacent free blocks into a
single larger block. This is much easier if the free block list is sorted by address (we just
have to look at the preceding and following block on the list once we find the insertion
point for the newly freed block). Otherwise, all free blocks have to be examined to
determine if coalescing is possible or not.

../continued

CSC 369H1 F, Fall 2003, Midterm Student Number: |_ _ _| |_ _ _| |_ _ _| 6

5. [11 marks]
Following an all-candidates meeting at city hall, politicians and reporters need to take an
elevator that can only carry exactly 3 people at a time down to the ground floor to exit
the building. (The elevator can come back up again empty). The elevator must carry 2
politicians and 1 reporter on each trip—politicians don’t want to be outnumbered by
reporters, and reporters don’t want politicians to leave without answering any questions.
There should be no unnecessary waiting: politicians and reporters should not wait if
there is enough of them ready to form a “safe” elevator load.

A politician calls the procedure PoliticianArrives and a reporter calls the procedure
ReporterArrives when they are ready to use the elevator. The procedures arrange the
arriving politicians and reporters into “safe” elevator loads; once a full load is ready, one
thread calls EnterElevator and after the call to EnterElevator, all three threads can
leave. Assume that the EnterElevator procedure correctly blocks the caller until the
elevator is ready for another load of passengers. Assume also that there are exactly
twice as many politicians as reporters at the meeting.

Below is a semaphore-based implementation, using Posix semaphores and pthreads to
represent politicians and reporters. Assume the semaphore waiting queues are FCFS.

/* Semaphores are initialized to 0 */
sem_t politician_ready;
sem_t reporter_ready;

void *PolitionArrives() {
 politician_ready.post();
 reporter_ready.wait();
 pthread_exit(0);

void *ReporterArrives() {
 politician_ready.wait();
 politician_ready.wait();
 EnterElevator();
 reporter_ready.post();
 reporter_ready.post();

}

 pthread_exit(0);
}

(a) [2 marks] State whether the implementation works (it is correct) or does not work (it
is either always wrong or there exists an execution scenario where it is wrong).

Does not work.

(b) [9 marks] Justify your answer to (a) by either (i) proving that the implementation is
correct, OR (ii) showing an execution scenario where the implementation is not correct and
suggest a way to fix it (use the next page for your answer).

 ../continued

CSC 369H1 F, Fall 2003, Midterm Student Number: |_ _ _| |_ _ _| |_ _ _| 7

Execution scenario, assuming initial value of semaphores (Px indicates Polititian thread x, Rx
indicates Reporter thread x):

P1: politician_ready.post() polititian_ready semaphore value = 1
P2: politician_ready.post() polititian_ready semaphore value = 2
P1: reporter_ready.wait() reporter_ready semaphore value = 0, P1 blocks
P2: reporter_ready.wait() reporter_ready semaphore value = 0, P2 blocks
R1: politician_ready.wait() decrements politician_ready value to 1 and returns
R2: politician_ready.wait() decrements politician_ready value to 0 and returns
R1: politician_ready.wait() R1 blocks, even though there are 2 politicians ready to leave

At this point we have violated the specification that says there should be no unnecessary waiting.

We can fix this with a third semaphore, one_reporter, initialized to 1. Each reporter should call
one_reporter.wait() before waiting for the politicians, and one_reporter.post() before calling
EnterElevator. This guarantees that one reporter can be matched with a pair of politicians before
another reporter starts to be matched up. (This limits the rate at which elevator car loads can be
formed, but since we only have a single elevator, this isn’t a serious problem.)

Total marks = (50)
End of test

../continued

