Part II: Using FD Theory to do Database Design
Recall that poorly designed table?

<table>
<thead>
<tr>
<th>part</th>
<th>manufacturer</th>
<th>manAddress</th>
<th>seller</th>
<th>sellerAddress</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>5.59</td>
</tr>
<tr>
<td>8624</td>
<td>Lee Valley</td>
<td>102 Vaughn</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>23.99</td>
</tr>
<tr>
<td>9141</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>12.50</td>
</tr>
<tr>
<td>1983</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>Walmart</td>
<td>5289 St Clair W</td>
<td>4.99</td>
</tr>
</tbody>
</table>

◆ We can now express the relationships as FDs:
 ◆ part → manufacturer
 ◆ manufacturer → manAddress
 ◆ seller → sellerAddress

◆ The FDs tell us there can be redundancy, thus the design is bad.

◆ That’s why we care about FDs.

◆ [Exercise 1]
Decomposition

To improve a badly-designed schema \(R(A_1, A_2, \ldots, A_n) \), we will decompose it into smaller relations \(S(B_1, B_2, \ldots, B_m) \) and \(T(C_1, C_2, \ldots C_k) \) such that:

\[
S = \pi_{B_1, B_2, \ldots, B_m}(R) \\
T = \pi_{C_1, C_2, \ldots, C_k}(R) \\
\{A_1, A_2, \ldots, A_n\} = \{B_1, B_2, \ldots, B_m\} \cup \{C_1, C_2, \ldots C_k\}
\]
But *which* decomposition?

- Decomposition can definitely improve a schema.
- But which decomposition? There are many possibilities.
- And how can we be sure a new schema doesn’t exhibit other anomalies?
- **Boyce-Codd Normal Form (BCNF)** guarantees it.
Boyce-Codd Normal Form

We say a relation R is in BCNF if for every nontrivial FD $X \rightarrow Y$ that holds in R, X is a superkey.

- Remember: X and Y are sets (could be singletons too, though)
- Remember: nontrivial means Y is not contained in X.
- Remember: a superkey doesn’t have to be minimal.
Boyce-Codd Normal Form

- We say a relation R is in **BCNF** if for every nontrivial FD $X \rightarrow Y$ that holds in R, X is a superkey.

![Diagram showing a relation R with attributes X and Y, violating BCNF](image)

Not in BCNF!
Or
“Violates BCNF”
Example 1

◆ Person (SIN#, Name, Address)
 FDs = {SIN# -> Name, Address}

◆ Is this relation in BCNF?
 ♦ Yes, because SIN# is a superkey (in fact, a key).
 ♦ SIN#⁺ = SIN#, Name, Address
Example 2

- **Person** (SIN#, Name, Address, Hobby)

 \[\text{FDs} = \{ \text{SIN#} \rightarrow \text{Name, Address} \} \]

- **Is this relation in BCNF?**
 - No, because SIN# is not a key.
 - What about if we had

 \[\text{FDs} = \{ \text{SIN#, Hobby} \rightarrow \text{Name, Address} \} \]
 - Yes, LHS is a key now.
More complex example

- Relation: Books (Author, Nationality, BookTitle, Genre, NumberOfPages, Rating)
- FDs = {Author -> Nationality, BookTitle -> Genre, NumberOfPages, Rating}

Is this in BCNF?
- No. The only key is (Author, BookTitle)

How would you intuitively make it be?
- Decompose based on each LHS’s closure
Intuition

In other words, BCNF requires that:

Only things that FD *everything*
can FD anything.

Why is the BCNF property valuable?

Note:

◆ FDs are not the problem. They are facts!
◆ The schema (in the context of the FDs) is the problem.
BCNF_decomp(R, F):

If an FD $X \rightarrow Y$ in F violates BCNF

Compute X^+.

Replace R by two relations with schemas:

$$R_1 = X^+$$

$$R_2 = R - X^+ + X$$

Project the FD’s F onto R_1 and R_2.

Recursively decompose R_1 and R_2 into BCNF.
1) Start with the LHS of the violating FD.

2) Close the LHS to get one new relation R_1

$R_1 = X^+$

3) Everything except the new stuff is the other new relation R_2.

$R_2 = R - X^+ + X$

X is in both new relations to make a connection between them.
Example

- FoodTasters (name, addr, foodLiked, producer, favFood)
- \{a. name->addr, b. name->favFood, c. foodLiked->producer\}

- Pick FD that violates BCNF: name -> addr
 name\(^+\) = name, addr, favFood

- Decomposed relations and projected FDs:
 - FoodTasters1 (name, addr, favFood) \{name->addr, name->favFood\}
 - FoodTasters2 (name, foodLiked, producer) \{foodLiked->producer\}
Example

- Decomposed relations and projected FDs:
 - FoodTasters1 (name, addr, favFood) \{name->addr, name->favFood\}
 - FoodTasters2 (name, foodLiked, producer) \{foodLiked->producer\}

- Not done! We need to check further violations.
 - FoodTesters1 – No violations!
 - FoodTesters2 – Not BCNF! foodLiked not a key, foodLiked+ no name

- Decompose FoodTesters2 and project dependencies:
 - FoodTasters3 (foodLiked, producer) \{foodLiked->producer\}
 - FoodTasters4 (name, foodLiked)

- Result (satisfies BCNF):
 - FoodTasters1 (name, addr, favFood) \{name->addr, name->favFood\}
 - FoodTasters3 (foodLiked, producer) \{foodLiked->producer\}
 - FoodTasters4 (name, foodLiked)
Some comments on BCNF decomp

◆ If more than one FD violates BCNF, you may decompose based on any one of them.
 ♦ Because of this, there may be multiple possible results.

◆ The new relations we create may not be in BCNF. We must recurse.
 ♦ We only keep the relations at the “leaves”.
Speed-ups for BCNF decomposition

◆ Don’t need to know any keys.
 ◆ Only superkeys matter.
◆ And don’t need to know *all* superkeys.
 ◆ Only need to check whether the LHS of each FD is a superkey.
 ◆ Use the closure test (simple and fast!).
More speed-ups

◆ When projecting FDs onto a new relation, check each new FD:
 ♦ Does the new relation violate BCNF because of this FD?
◆ If so, abort the projection.
 ♦ You are about to discard this relation anyway (and decompose further).
Exercises

- Parts(part, manuf, seller, price)
- FDs = {part->manuf; part,seller->price}
- Exercises
How to determine keys from FDs?

◆ **Prime attribute:** if it’s part of any key

◆ **Example:** \(R(ABC), \text{ FDs} = \{A\rightarrow B, B\rightarrow C\} \)
 - A is clearly a key
 - \(=> \) A is prime, B and C are non-prime

◆ **R(ABC), FDs = \{AB\rightarrow C, C\rightarrow A\}**
 - AB and BC are the keys (Check: closure test!)
 - \(=> \) A, B, and C are prime (but not keys alone!)

◆ How do I know AB and BC are keys?
How to determine keys from FDs?

- $R(ABC)$, FDs = \{A\rightarrowB, B\rightarrowC\}

<table>
<thead>
<tr>
<th>Left</th>
<th>Middle</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

- Only on Left \Rightarrow must be part of any key!
- Only on Right \Rightarrow cannot be part of any key!
- Middle \Rightarrow maybe, maybe not.
- In this case: $A^+ = ABC \Rightarrow A$ is the key
- A is part of any key, and it happens to be a key \Rightarrow no need to look at B
How to determine keys from FDs?

- **R(ABCD)**, **FDs** = \{**AB**->C, **C**->B, **C**->D\}

<table>
<thead>
<tr>
<th>Left</th>
<th>Middle</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B C</td>
<td>D</td>
</tr>
</tbody>
</table>

- **A** might be a key, look at **A**\(^+\) = A
- **Add** one from Middle: **AB**\(^+\) = ABCD
- **Must** try it with the other Middles too: **AC**\(^+\) = ACBD
- => both **AB**, **AC** are keys!
- **Which** ones are prime attributes?
- **What** if all are in the middle?
 - Try one at a time, then combinations of two, etc.
Announcements

◆ Optional Xquery tutorial with extra practice exercises
 ❖ Thursday, Nov 26, 5:10pm-7pm, in MC252, OR
 ❖ Friday, Nov 27, 10:10am-12pm, in GB220
 ❖ Don’t have to go to both, it’s the same thing

◆ Remember to start early on A3!
 ❖ We’ll likely post one more extra helper tutorial for FDs/BCNF.
 ❖ Extra office hours closer to deadline

◆ Course evaluations should be out
 ❖ http://uoft.me/course-evals
Properties of Decompositions
What we want from a decomposition

1. **No anomalies.**

2. **Lossless Join** : It should be possible to

 a) project the original relations onto the decomposed schema
 b) then reconstruct the original by joining. We should get back *exactly the original tuples* (no more, no less).

3. **Dependency Preservation** :
 All the original FD’s should be satisfied.
What is lost in a “lossy” join?

◆ For any decomposition, it is the case that:
 ◆ r ⊆ r₁ △ ... △ rₙ
 ◆ I.e., we will get back every tuple.

◆ But it may not be the case that:
 ◆ r ⊇ r₁ △ ... △ r
 ◆ I.e., we can get spurious tuples.
 ◆ Example:

<table>
<thead>
<tr>
<th>VIN#</th>
<th>Brand</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>Honda</td>
<td>Red</td>
</tr>
<tr>
<td>11111</td>
<td>Ford</td>
<td>Blue</td>
</tr>
<tr>
<td>22222</td>
<td>Ford</td>
<td>Black</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VIN#</th>
<th>Brand</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>Honda</td>
<td></td>
</tr>
<tr>
<td>11111</td>
<td>Ford</td>
<td></td>
</tr>
<tr>
<td>22222</td>
<td>Ford</td>
<td></td>
</tr>
</tbody>
</table>

◆ [Exercise]

Notice anything about R₁ △ R₂?
What BCNF decomposition offers

1. **No anomalies**: ✓ (Due to no redundancy)
2. **Lossless Join**: ✓ (see next slide for important observation)
3. **Dependency Preservation**: ×
The BCNF property does not guarantee lossless join

- If you use the BCNF decomposition algorithm, a lossless join is guaranteed.
- Not if the schema just happens to be in BCNF
 - If you generated a decomposition some other way
 - You have to check to make sure you have a lossless join, even if your schema satisfies BCNF!
- We’ll see the basic algorithm for this check more formally later (Chase test).
Preservation of dependencies

▪ BCNF decomposition does not guarantee preservation of dependencies.

▪ I.e., in the schema that results, it may be possible to create an instance that:
 ◆ satisfies all the FDs in the final schema,
 ◆ but violates one of the original FDs.

▪ Why? Because the algorithm goes too far — breaks relations down too much.
What do we do if ...

◆ There is one structure of FDs that causes trouble when we decompose.
◆ $AB \rightarrow C$ and $C \rightarrow B$.
 ◦ Example: $A =$ street address, $B =$ city, $C =$ zip code.
◆ There are two keys, $\{A,B\}$ and $\{A,C\}$.
◆ $C \rightarrow B$ is a BCNF violation, so we must decompose into $R1 = BC$ (because $C^+ = BC$), and $R2 = AC$ (recall: $R - C^+ + C$).
We Cannot Enforce FDs

- The problem is that if we use \(R_1 = AC \) and \(R_2 = BC \) as our database schema, we cannot enforce the FD \(AB \rightarrow C \) by checking FDs in these decomposed relations.

- Example with \(A = \text{street}, \ B = \text{city}, \ \text{and} \ C = \text{zip} \) on the next slide.
An Unenforceable FD

\[A = \text{street}, \ B = \text{city}, \ C = \text{zip} \]

Previous FDs: \(AB \rightarrow C, \ C \rightarrow B \) => a. \(\text{street,city} \rightarrow \text{zip} \) b. \(\text{zip} \rightarrow \text{city} \)

\[
\begin{array}{|c|c|}
\hline
\text{street} & \text{zip} \\
\hline
545 \text{ Tech Sq.} & 02138 \\
545 \text{ Tech Sq.} & 02139 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{city} & \text{zip} \\
\hline
\text{Cambridge} & 02138 \\
\text{Cambridge} & 02139 \\
\hline
\end{array}
\]

Natural Join (Join tuples with equal zip codes):

\[
\begin{array}{|c|c|c|}
\hline
\text{street} & \text{city} & \text{zip} \\
\hline
545 \text{ Tech Sq.} & \text{Cambridge} & 02138 \\
545 \text{ Tech Sq.} & \text{Cambridge} & 02139 \\
\hline
\end{array}
\]

Although no FDs were violated in the decomposed relations (b. is still enforced in R2, right?), the FD \text{street city} \rightarrow \text{zip} is violated by the database as a whole.
3NF lets us avoid this problem

- 3rd Normal Form (3NF) modifies the BCNF condition to be less strict, so that we don’t have to decompose in this problem situation.

- Recall: An attribute is *prime* if it is a member of any key.

- \(X \rightarrow A \) violates 3NF if and only if \(X \) is not a superkey, and also \(A \) is not prime.

- I.e., in 3NF, it’s ok if \(X \) is not a superkey as long as \(A \) is prime.
Example

◆ R(ABC)
◆ FDs = \{AB->C, C->B\}

◆ Keys?
 ♦ AB
 ♦ AC

◆ AB->C => AB is a superkey anyway
◆ C->B => C not a superkey, but B is prime!
=> R violates BCNF, but is in 3NF!
3NF_synthesis(\(F, L\)):

Construct a minimal basis \(M\) for \(F\).

For each FD \(X \rightarrow Y\) in \(M\)

Define a new relation with schema \(X \cup Y\).

If no relation is a superkey for \(L\)

Add a relation whose schema is some key.
Simple Example – 3NF Synthesis

- R(A,B,C,D,E), FDs = \{A->B, CD->E\}

3NF Synthesis:
- Compute all keys for R (recall simpler algorithm last time)
 - Keys: \{ACD\}
- Find the Minimal Cover/Basis: \{A->B, CD->E\}
- Use FDs in Minimal Basis to define new relations:
 - R1(A,B), R2(C,D,E)
- If none are a superkey for R, add relation whose schema is some key
 - Add R3(A, C, D)
- => The decomposition R1, R2, R3 is in 3NF.
3NF synthesis doesn’t “go too far”

◆ BCNF decomposition doesn’t stop decomposing until in all relations:
 ♦ if \(X \rightarrow A \) then \(X \) is a superkey.

◆ 3NF generates relations where:
 ♦ \(X \rightarrow A \) and yet \(X \) is \textit{not} a superkey, but \(A \) is at least prime.
What a 3NF decomposition offers

1. No anomalies: ✗
2. Lossless Join: ✓
3. Dependency Preservation: ✓

◆ Neither BCNF nor 3NF can guarantee all three! We must be satisfied with 2 out of 3.
◆ Decompose too far ⇒ can’t enforce all FDs.
◆ Not far enough ⇒ can have redundancy.
◆ We consider a schema “good” if it is in either BCNF or 3NF.
How can we get anomalies?

- 3NF synthesis guarantees that the resulting schema will be in 3rd normal form.
- This allows FDs with a non-superkey on the LHS.
- This allows redundancy, and thus anomalies.
How do we know...?

... that the algorithm guarantees:

◆ **3NF**: A property of minimal bases [see the textbook for more]

◆ **Preservation of dependencies**: Each FD from a minimal basis is contained in a relation, thus preserved.

◆ **Lossless join**: It’ll be clearer once we know how to test for lossless join.
“Synthesis” vs “decomposition”

◆ 3NF synthesis:
 ♦ We build up the relations in the schema from nothing.

◆ BCNF decomposition:
 ♦ We start with a bad relation schema and break it down.
Testing for a Lossless Join

- If we project \(R \) onto \(R_1, R_2, \ldots, R_k \), can we recover \(R \) by rejoining?
- We will get all of \(R \).
 - Any tuple in \(R \) can be recovered from its projected fragments. This is guaranteed.
- But will we get only \(R \)?
 - Can we get a tuple we didn’t have in \(R \)?
 - This part we must check.
Aside: when we don’t need to test for lossless Join

◆ Both BCNF decomposition and 3NF synthesis guarantee lossless join.
◆ So we never need to test for lossless join, IF the schema we have has been generated through the BCNF decomposition or 3NF synthesis algorithms.
◆ But merely satisfying BCNF or 3NF does not guarantee a lossless join!
The Chase Test

An organized way to see if a tuple \(t \) in the natural join of subschemas \(R_i \), to be a tuple in original \(R \), using the FDs.

Suppose tuple \(t \) appears in the join.

Then \(t \) is the join of projections of some tuples of \(R \), one for each \(R_i \) of the decomposition.

Can we use the given FDs to show that one of these tuples must be \(t \)?
Setup for the Chase Test

- Start by assuming \(t = abc \ldots \).
- For each \(i \), there is a tuple \(s_i \) of \(R \) that has \(a, b, c, \ldots \) in the attributes of \(R_i \).
- \(s_i \) can have any values in other attributes.
- We’ll use the same letter as in \(t \), but with a subscript, for these components.
The algorithm

1. If two rows agree in the left side of a FD, make their right sides agree too.
2. Always replace a subscripted symbol by the corresponding unsubscripted one, if possible.
3. If we ever get a completely unsubscripted row, we know any tuple in the project-join is in the original (i.e., the join is lossless).
4. Otherwise, the final tableau is a counterexample (i.e., the join is lossy).
How to check if a join is lossless?

Problem: Given a decomposed relation, check if decomposed tables are able to produce the EXACT original table

Slightly Simpler Algorithm:

I. represent FDs for each relation in a table

II. Try to get at least one row to have all attributes, using these rules, applied repeatedly to FDs:

1. At least 2 rows with attributes for LHS of FD, and
2. At least 1 row with attribute for RHS of FD, and
3. At least 1 row with attribute not in RHS of FD

Example: R(A,B,C,D,E), {A->B, A->C, D->C, BD->E}

R1(A,B,D)

R2(B,C,D,E)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

=> Lossless!
Another example

◆ Problem: Given a decomposed relation, check if decomposed tables are able to produce the EXACT original table

◆ Algorithm: I. represent FDs for each relation in a table
 II. Try to get at least one row to have all attributes.
 ♦ 1. At least 2 rows with attributes for LHS of FD, and
 ♦ 2. At least 1 row with attribute for RHS of FD, and
 ♦ 3. At least 1 row with attribute not in RHS of FD

◆ Example:
 ♦ R(A,B,C,D,E), \{AB->C, B->D, E->A, C->E\}
 ♦ R1(A,C,E)
 ♦ R2(B,C,D)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>R2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

=> Lossless!