Design Theory for Relational Databases

csc343, Fall 2015
Diane Horton

Originally based on slides by Jeff Ullman
Introduction

◆ There are always many different schemas for a given set of data.

◆ E.g., you could combine or divide tables.

◆ How do you pick a schema? Which is better? What does “better” mean?

◆ Fortunately, there are some principles to guide us.
Database Design Theory

◆ It allows us to improve a schema systematically.
◆ General idea:
 ◦ Express constraints on the relationships between attributes
 ◦ Use these to decompose the relations
◆ Ultimately, get a schema that is in a “normal form” that guarantees good properties, such as no anomalies.
◆ “Normal” in the sense of conforming to a standard.
◆ The process of converting a schema to a normal form is called normalization.
Agenda

◆ Functional Dependencies (FD)
◆ Closure
◆ FD Projection
◆ Minimal Cover
◆ Normalization: BCNF, 3NF
Part I: Functional Dependency Theory
A poorly designed table

<table>
<thead>
<tr>
<th>part</th>
<th>manufacturer</th>
<th>manAddress</th>
<th>seller</th>
<th>sellerAddress</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>5.59</td>
</tr>
<tr>
<td>8624</td>
<td>Lee Valley</td>
<td>102 Vaughn</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>23.99</td>
</tr>
<tr>
<td>9141</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>12.50</td>
</tr>
<tr>
<td>1983</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>Walmart</td>
<td>5289 St Clair W</td>
<td>4.99</td>
</tr>
</tbody>
</table>

◆ In any domain, there are relationships between attribute values.
◆ Perhaps:
 ◆ Every part has 1 manufacturer
 ◆ Every manufacture has 1 address
 ◆ Every seller has 1 address
◆ If so, this table will have redundant data.
Principle: Avoid redundancy

Redundant data can lead to anomalies.

<table>
<thead>
<tr>
<th>part</th>
<th>manufacturer</th>
<th>manAddress</th>
<th>seller</th>
<th>sellerAddress</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>5.59</td>
</tr>
<tr>
<td>8624</td>
<td>Lee Valley</td>
<td>102 Vaughn</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>23.99</td>
</tr>
<tr>
<td>9141</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>ABC</td>
<td>1229 Bloor W</td>
<td>12.50</td>
</tr>
<tr>
<td>1983</td>
<td>Hammers ‘R Us</td>
<td>99 Pinecrest</td>
<td>Walmart</td>
<td>5289 St Clair W</td>
<td>4.99</td>
</tr>
</tbody>
</table>

- **Update anomaly**: if Hammers ‘R Us moves and we update only one tuple, the data is inconsistent.
- **Deletion anomaly**: If ABC stops selling part 8624 and Lee Valley makes only that one part, we lose track of its address.
Definition of FD

◆ Suppose R is a relation, and X and Y are subsets of the attributes of R.
◆ $X \rightarrow Y$ asserts that:
 ▶ If two tuples agree on all the attributes in set X, they must also agree on all the attributes in set Y.
◆ We say that “$X \rightarrow Y$ holds in R”, or “X functionally determines Y.”
◆ An FD constrains what can go in a relation.
A → B means:

∀ tuples \(t_1, t_2, \)
(\(t_1[A] = t_2[A] \)) \(\Rightarrow \) (\(t_1[B] = t_2[B] \))

Or equivalently:

\(\neg \exists \) tuples \(t_1, t_2 \) such that
(\(t_1[A] = t_2[A] \)) \(\land \) (\(t_1[B] \neq t_2[B] \))
Generalization to multiple attributes

$A_1A_2 \ldots A_m \rightarrow B_1B_2 \ldots B_n$ means:

∀ tuples $t_1, t_2,$

$(t_1[A_1] = t_2[A_1] \land \ldots \land t_1[A_m] = t_2[A_m]) \Rightarrow$

$(t_1[B_1] = t_2[B_1] \land \ldots \land t_1[B_n] = t_2[B_n])$

Or equivalently:

$\neg \exists$ tuples t_1, t_2 such that

$(t_1[A_1] = t_2[A_1] \land \ldots \land t_1[A_m] = t_2[A_m]) \land$

$\neg (t_1[B_1] = t_2[B_1] \land \ldots \land t_1[B_n] = t_2[B_n])$
Why “functional dependency”?

◆ “dependency” because the value of \(Y \) depends on the value of \(X \).

◆ “functional” because there is a function that takes a value for \(X \) and gives a unique value for \(Y \).

◆ (It’s not a typical function; just a lookup.)
Equivalent sets of FDs

◆ When we write a set of FDs, we mean that all of them hold.
◆ We can very often rewrite sets of FDs in equivalent ways.
◆ When we say S_1 is equivalent to S_2 we mean that:
 ◦ S_1 holds in a relation iff S_2 does.
FD - Exercises

🔹 1. Create an instance of R that violates BC → D
 ◦ Any tuple with equal values of B, C but unequal D values!

🔹 2.a) Is the FD A→BC equivalent to the two FDs A→B, A→C?
 ◦ Yes!

🔹 2.b) Is the FD PQ→R equivalent to the two FDs P→Q, P→R?
 ◦ No.
 ◦ Example..
 P | Q | R

 2 | 1 | 4
 2 | 3 | 5
Splitting rules for FDs

◆ Can we split the RHS of an FD and get multiple, equivalent FDs?

◆ Can we split the LHS of an FD and get multiple, equivalent FDs?
Coincidence or FD?

- An FD is an assertion about every instance of the relation.
- You can’t know it holds just by looking at one instance.
- You must use knowledge of the domain to determine whether an FD holds.
FDs are closely related to keys

◆ Suppose K is a set of attributes for relation R.

◆ Our old definition of superkey:
 a set of attributes for which no two rows can have the same values.

◆ A claim about FDs:
 \(K \) is a superkey for \(R \) iff
 \(K \) functionally determines all of \(R \).
FDs are a *generalization* of keys

- **Superkey:**
 \[X \rightarrow R \]
 All attributes

- **Functional dependency:**
 \[X \rightarrow Y \]

- A superkey must include *all* the attributes of the relation on the RHS.
- An FD can have just a subset of them.
Inferring FDs

◆ Given a set of FDs, we can often infer further FDs.
◆ This will come in handy when we apply FDs to the problem of database design.
◆ Big task: given a set of FDs, infer every other FD that must also hold.
◆ Simpler task: given a set of FDs, infer whether a given FD must also hold.
Examples

◆ If $A \rightarrow B$ and $B \rightarrow C$ hold, must $A \rightarrow C$ hold?

◆ If $A \rightarrow H$, $C \rightarrow F$, and $FG \rightarrow AD$ hold, must $FA \rightarrow D$ hold? must $CG \rightarrow FH$ hold?

◆ Aside: we are not generating new FDs, but testing specific possible FD(s).
Prove an FD (LHS->RHS) **follows**
Method 1: using first principles

◆ You can prove it by referring back to
 ◦ The FDs that you know hold, and
 ◦ Apply FD inference rules (axioms)

◆ But the **Closure Test** is easier!
Prove an FD (LHS->RHS) follows
Method 2: using the Closure Test

◆ Assume you know the values of the LHS attributes, and figure out:
 everything else that is determined.

<e.g. restaurant name> ➔ everything I can learn about it...?

◆ If the result includes the RHS attributes, then you know that LHS -> RHS holds

◆ This is called the closure test.
Y is a set of attributes, **S** is a set of **FDs**.
Return the closure of **Y** under **S**.

Attribute_closure(\(Y, S\)):

Initialize \(Y^+\) **to** \(Y\)

Repeat until no more changes occur:

If there is an FD \(LHS \rightarrow RHS\) in \(S\) such that LHS is in \(Y^+\):
Add RHS to \(Y^+\)

Return \(Y^+\)

If LHS is in \(Y^+\) and LHS \(\rightarrow\) RHS holds, we can add RHS to \(Y^+\)
Visualizing attribute closure

If LHS is in Y^+ and LHS \rightarrow RHS holds, we can add RHS to Y^+.
\textit{S} is a set of FDs; \textit{LHS} \rightarrow \textit{RHS} is a single FD. Return true iff \textit{LHS} \rightarrow \textit{RHS} follows from \textit{S}.

\textbf{FD_follows(S, LHS \rightarrow RHS):}

\begin{align*}
Y^+ &= \text{Attribute_closure}(\text{LHS}, S) \\
\text{return} &\quad (\text{RHS is in } Y^+)
\end{align*}
Exercise

Suppose we have a relation on attributes ABCDEF, with FDs:
\[AC \rightarrow F, \ CEF \rightarrow B, \ C \rightarrow D, \ DC \rightarrow A \]

a) Does it follow that \(C \rightarrow F \)?

Ans: \(C^+ = \ldots? \)
\(C^+ = CDAF \)
Then, \(C \rightarrow F \) follows

b) Does it follow that \(ACD \rightarrow B \)?

Ans: \(ACD^+ = \ldots? \)
\(ACD^+ = ACDF \)
Then, \(ACD \rightarrow B \) does not follow
Projecting FDs

Later, we will learn how to **normalize** a schema by **decomposing** relations. (This is the whole point of this theory.)

We will need to be aware of what FDs hold in the new, smaller, relations.

In other words, we must **project our FDs** onto the attributes of our new relations.
Exercise - Projecting FDs

Suppose we have a relation on attributes **ABCDE** with FDs:
\[A \rightarrow C, \quad C \rightarrow E, \quad E \rightarrow BD \]

Project the FDs onto attributes **ABC:

To project onto a set of attributes, we systematically consider every possible LHS of an FD that might hold on those attributes.

\[
\begin{align*}
A^+ &= \\
B^+ &= \\
C^+ &= \\
AB^+ &= \\
AC^+ &= \\
BC^+ &=
\end{align*}
\]
Exercise - Projecting FDs

- Suppose we have a relation on attributes **ABCDE** with FDs:
 \[A \rightarrow C, \quad C \rightarrow E, \quad E \rightarrow BD \]

Project the FDs onto attributes ABC:

- To project onto a set of attributes, we systematically consider every possible LHS of an FD that might hold on those attributes.

 \[A^+ = \{ \text{ACEBD} \} \]
 therefore \(A \rightarrow BC \).

 \[B^+ = \{ B \} \]
 Yields no FDs for our set of attributes.

 \[C^+ = \{ \text{CEBD} \} \]
 therefore \(C \rightarrow B \).

- We don’t need to consider any supersets of \(A \). \(A \) already determines all of our attributes ABC, so supersets of \(A \) will be only yield FDs that already follow from \(A \rightarrow BC \).

- The only superset left is \(BC \):

 \[BC^+ = \{ \text{BCED} \} \]
 This yields no FDs for our set of attributes.

- So the projection of the FDs onto ABC is: \{A→BC, C→B \}
S is a set of FDs; L is a set of attributes.

Return the projection of S onto L:

all FDs that follow from S and involve only attributes from L.

Project(S, L):

Initialize T to \emptyset.

For each subset X of L:

Compute X^+ _Close X and see what we get._

For every attribute A in X^+:

If A is in L: _$X \rightarrow A$ is only relevant if A is in L (we know X is)._

add $X \rightarrow A$ to T.

Return T.
A few speed-ups

✿ No need to add $X \rightarrow A$ if A is in X itself. It’s a trivial FD.

✿ These subsets of X won’t yield anything, so no need to compute their closures:
 - the empty set
 - the set of all attributes

✿ Neither are big savings, but ...
A big speed-up

If we find $X^+ = \text{all attributes}$, we can ignore any *superset* of X.

- It can only give use “weaker” FDs (with more on the LHS).

This is a big time saver!
Projection is expensive

- Even with these speed-ups, projection is still expensive.

- Suppose R_1 has n attributes. How many subsets of R_1 are there?

 (A set of n elements has 2^n subsets)
Minimal Basis (aka Minimal Cover)

- We saw earlier that we can very often rewrite sets of FDs in equivalent ways.
- Example: $S_1 = \{A -> BC\}$ is equivalent to $S_2 = \{A -> B, A -> C\}$.
- Given a set of FDs S, we may want to find a **minimal basis**: A set of FDs that is equivalent, but has
 1. No redundant FDs
 2. No unnecessary attributes on the LHS
S is a set of FDs. Return a minimal basis for S.

Minimal_basis(S):

Repeat until no more changes result:

1. Remove FDs that are implied by the rest.
2. For each FD with 2^+ attributes on the left:
 If you can remove one attribute from the LHS and get an FD that follows from the rest:
 Do so! (It’s a stronger FD.)
Example – Minimal Basis

What is the minimal cover of these FDs in ABCDEG:

\[A \rightarrow B, \quad ABCD \rightarrow E, \quad G \rightarrow A, \quad G \rightarrow B \]

Answer:

(1) Can any of the FDs be implied from another FD? (if so, drop)

*Systematic approach:

- Calculate the closure of the LHS in each FD, using the rest of FDs; Can we reach the RHS using the other FDs?

1. \(A \rightarrow B \)

 \(A^+ \) under \{2,3,4\} \? = ...

2. \(ABCD \rightarrow E \)

 \(ABCD^+ \) under \{1,3,4\} \? = ...

3. \(G \rightarrow A \)

 \(G^+ \) under \{1,2,4\} \? = ...

4. \(G \rightarrow B \)

 \(G^+ \) under \{1,2,3\} \? = GAB

- Drop FD#4.
Example – Minimal Basis

◆ What is the minimal cover of these FDs in ABCDEG:

\[A \rightarrow B, \quad ABCD \rightarrow E, \quad G \rightarrow A, \quad G \rightarrow B \]

Answer:

(2) Check if any LHS can be reduced (any attributes can be removed?). If so, drop the extra attributes.

1. \(A \rightarrow B \)

2. \(ABCD \rightarrow E \)

 \textit{Start with removing 1 attribute..} (ACD+, ABC+, BCD+, ..and so on)

 \(ACD+ = ABCD \)

3. \(G \rightarrow A \)
Example – Minimal Basis

What is the minimal cover of these FDs in ABCDEG:

\[A \rightarrow B, \quad ABCD \rightarrow E, \quad G \rightarrow A, \quad G \rightarrow B \]

Answer:

(2) Check if any LHS can be reduced (any attributes can be removed?). If so, drop the extra attributes.

1. A \rightarrow B
2. ABCD \rightarrow E

 \textit{Start with removing 1 attribute..} (ACD+, ABC+, BCD+, ..and so on)

 ACD+ = ABCD

2. ACD \rightarrow E
3. G \rightarrow A

Result: Minimal basis is \ A \rightarrow B, \ ACD \rightarrow E, \ G \rightarrow A

Please check course website for more detailed examples
Some comments on computing a minimal basis

◆ Often there are multiple possible results, depending on the order in which you consider the possible simplifications.

◆ After you identify a **redundant** FD, you must **not** use it when computing any subsequent closures (as you consider whether other FDs are redundant).
... and some that are less intuitive

- When you are computing closures to decide whether the LHS of an FD
 \[a_1a_2...a_m \rightarrow b_1b_2...b_n \]
 can be simplified, continue to use that FD.

- When you have tried to eliminate each FD and to reduce each LHS, you must go back and try again.