Temporal Difference Learning

Rick Valenzano and Sheila McIlraith

Acknowledgements

- Based on textbook by Sutton and Barto
- Also used slides from Adam White

Outline

- TD updates insteads of MC or DP
- TD prediction
- Sarsa on-policy control
- Q-learning off-policy control

State-Value Updates

• Recall the update template

NewEstimate =

LastEstimate + StepSize · (Target – LastEstimate)

- Target is what we want
 - Or an estimate (*i.e.* sample) of what we want
- Taking a step toward that target

- Consider the prediction problem
 - Specifically, trying to compute $v_{\pi}(s)$

 $v_{\pi}(s) = \mathcal{E}_{\pi}[G_t | S_t = s]$

$$\nu_{\pi}(s) = \mathbf{E}_{\pi}[G_t | S_t = s]$$
$$= \mathbf{E}_{\pi}\left[\sum_{i=0}^{\infty} \gamma^i \cdot R_{t+i+1} | S_t = s\right]$$

$$\nu_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$$

= $\mathbb{E}_{\pi}\left[\sum_{i=0}^{\infty} \gamma^i \cdot R_{t+i+1} | S_t = s\right]$
= $\mathbb{E}_{\pi}\left[R_{t+1} + \gamma \cdot \sum_{i=1}^{\infty} \gamma^i \cdot R_{t+i+1} | S_t = s\right]$

$$\nu_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$$

$$= \mathbb{E}_{\pi} \left[\sum_{i=0}^{\infty} \gamma^i \cdot R_{t+i+1} | S_t = s \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma \cdot \sum_{i=1}^{\infty} \gamma^i \cdot R_{t+i+1} | S_t = s \right]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma \cdot \nu_{\pi}(S_{t+1}) | S_t = s]$$

$$v_{\pi}(s) = \mathbf{E}_{\pi}[G_t|S_t = s]$$

$$= \mathbf{E}_{\pi}\left[\sum_{i=0}^{\infty} \gamma^i \cdot R_{t+i+1} \mid S_t = s\right]$$

$$= \mathbf{E}_{\pi}\left[R_{t+1} + \gamma \cdot \sum_{i=1}^{\infty} \gamma^i \cdot R_{t+i+1} \mid S_t = s\right]$$

$$= \mathbf{E}_{\pi}[R_{t+1} + \gamma \cdot \nu_{\pi}(S_{t+1}) \mid S_t = s]$$

Monte Carlo State Update

 $v_{\pi}(s) = \mathbf{E}_{\pi}[G_t | S_t = s]$

Leads to the following update rule:

$$V(s) = V(s) + \alpha \cdot (\mathsf{E}_{\pi}[G_t | S_t = s] - V(s))$$

where α is a constant step size

Monte Carlo State Update

 $v_{\pi}(s) = \mathcal{E}_{\pi}[G_t | S_t = s]$

Leads to the following update rule:

$$V(s) = V(s) + \frac{1}{N(s)} \cdot (G_t - V(s))$$

 G_t is being used as an estimate of $E_{\pi}[G_t|S_t = s]$

$$\nu_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$$

$$= \mathbb{E}_{\pi} \left[\sum_{i=0}^{\infty} \gamma^i \cdot R_{t+i+1} | S_t = s \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma \cdot \sum_{i=1}^{\infty} \gamma^i \cdot R_{t+i+1} | S_t = s \right]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma \cdot \nu_{\pi}(S_{t+1}) | S_t = s]$$

$$\nu_{\pi}(s) = \mathbb{E}_{\pi}[G_{t}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}\left[\sum_{i=0}^{\infty} \gamma^{i} \cdot R_{t+i+1} \mid S_{t} = s\right]$$

$$= \mathbb{E}_{\pi}\left[R_{t+1} + \gamma \cdot \sum_{i=1}^{\infty} \gamma^{i} \cdot R_{t+i+1} \mid S_{t} = s\right]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma \cdot \nu_{\pi}(S_{t+1}) \mid S_{t} = s]$$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma \cdot v_{\pi}(S_{t+1}) | S_t = s]$$

Leads to the following update rule

$$V(s) = V(s) + \alpha \cdot (E_{\pi}[R_{t+1} + \gamma \cdot \nu_{\pi}(S_{t+1})|S_t = s] - V(s))$$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma \cdot v_{\pi}(S_{t+1}) | S_t = s]$$

Leads to the following update rule

$$V(s) = V(s) + (E_{\pi}[R_{t+1} + \gamma \cdot v_{\pi}(S_{t+1}) | S_t = s] - V(s))$$

If $\alpha = 1$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma \cdot v_{\pi}(S_{t+1}) | S_t = s]$$

Leads to the following update rule

$$V(s) = V(s) + (E_{\pi}[R_{t+1} + \gamma \cdot v_{\pi}(S_{t+1}) | S_t = s] - V(s))$$

If $\alpha = 1$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma \cdot v_{\pi}(S_{t+1}) | S_t = s]$$

Leads to the following update rule

$$V(s) = E_{\pi}[R_{t+1} + \gamma \cdot v_{\pi}(S_{t+1}) | S_t = s]$$

If $\alpha = 1$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma \cdot v_{\pi}(S_{t+1}) | S_t = s]$$

Leads to the following update rule

$$V(s) = E_{\pi}[R_{t+1} + \gamma \cdot v_{\pi}(S_{t+1}) | S_{t} = s]$$

= $\sum_{a} \pi(a|s) \cdot \left[\sum_{s',r} p(s',r|s,a)[r+\gamma \cdot V(s')] \right]$

where V(s') is an estimate of $v_{\pi}(s')$

$$V(s) = \sum_{a} \pi(a|s) \cdot \left[\sum_{s',r} p(s',r|s,a) [r+\gamma \cdot V(s')] \right]$$

- **Bootstrapping**: not just learning from outcomes, but on other value function estimates
- Explicitly uses knowledge of the reward function and the transition probabilities

$$\nu_{\pi}(s) = \mathbb{E}_{\pi}[G_{t}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}\left[\sum_{i=0}^{\infty} \gamma^{i} \cdot R_{t+i+1} \mid S_{t} = s\right]$$

$$= \mathbb{E}_{\pi}\left[R_{t+1} + \gamma \cdot \sum_{i=1}^{\infty} \gamma^{i} \cdot R_{t+i+1} \mid S_{t} = s\right]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma \cdot \nu_{\pi}(S_{t+1}) \mid S_{t} = s]$$

Temporal Difference Evaluation

 $v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma \cdot v_{\pi}(S_{t+1}) | S_t = s]$

- Don't have explicitly defined model
- But when we take an action, we get a reward R_{t+1} and a new state s^\prime

TD Target: $R_{t+1} + \gamma \cdot V(s')$

- Estimate of return we will get

TD(0) Update

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma \cdot v_{\pi}(S_{t+1}) | S_t = s]$$

Leads to the following update rule

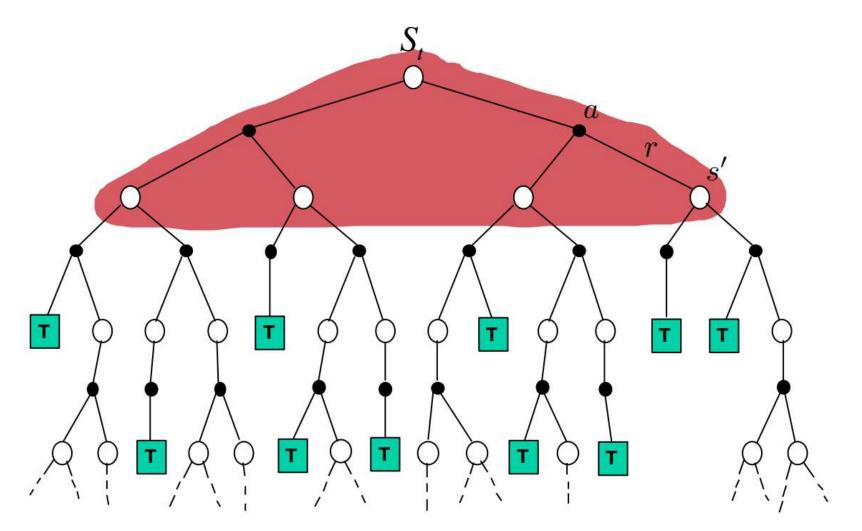
$$V(s) = V(s) + \alpha \cdot (R_{t+1} + \gamma \cdot V(s') - V(s))$$

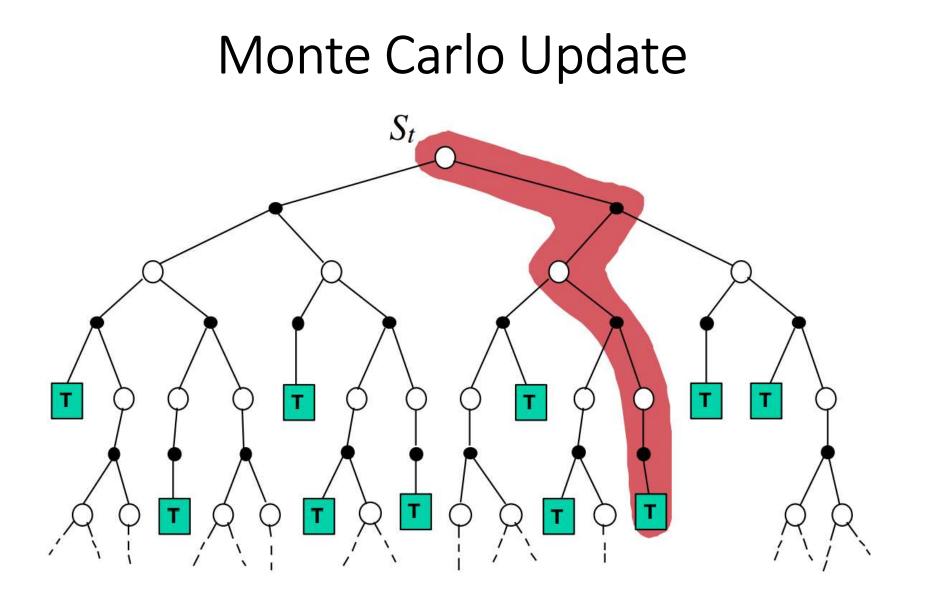
Temporal Difference Update

- Consider predicting the temperature on Saturday
 - Have radar info, wind info, air pressure, ...
 - Defines the state
- Prediction says 18 degrees
- Could wait until Saturday, then adjust how we predict temperature in the Thursday state
 - Like an MC update

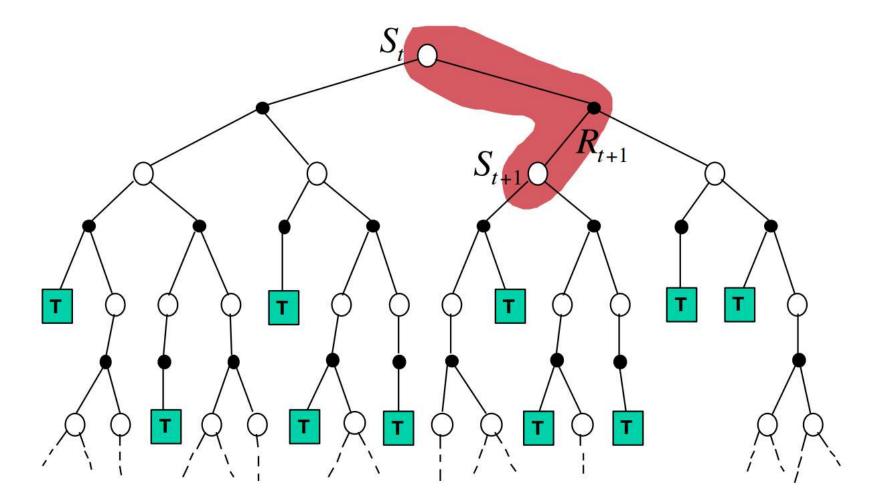
Temporal Difference Update

- Consider predicting the temperature on Saturday
 - Have radar info, wind info, air pressure, ...
 - Defines the state
- Prediction says 18 degrees
- On Friday, can use our method to update the way the prediction was made on Thursday
 - Like a temporal difference update





TD(0) Update



TD(0) Policy Evaluation

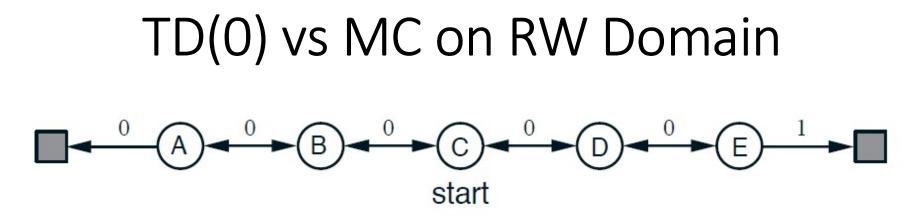
Input: the policy π to be evaluated Initialize V(s) arbitrarily (e.g., $V(s) = 0, \forall s \in S^+$) Repeat (for each episode): Initialize SRepeat (for each step of episode): $A \leftarrow action$ given by π for S Take action A, observe R, S' $V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]$ $S \leftarrow S'$ until S is terminal

TD(0) Policy Evaluation

- Consider predicting the temperature on Saturday
 - Have radar info, wind info, air pressure, ...
 - Defines the state
- Prediction says 18 degrees
- On Friday, can use our method to update the way the prediction was made on Thursday
 - Like a temporal difference update

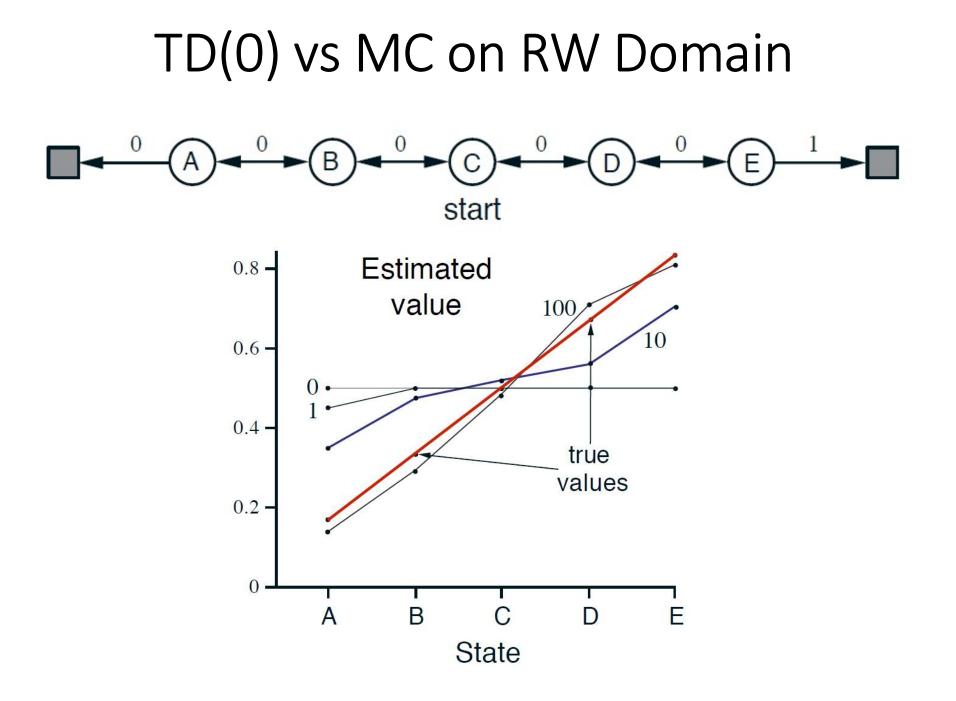
TD(0) vs Monte Carlo

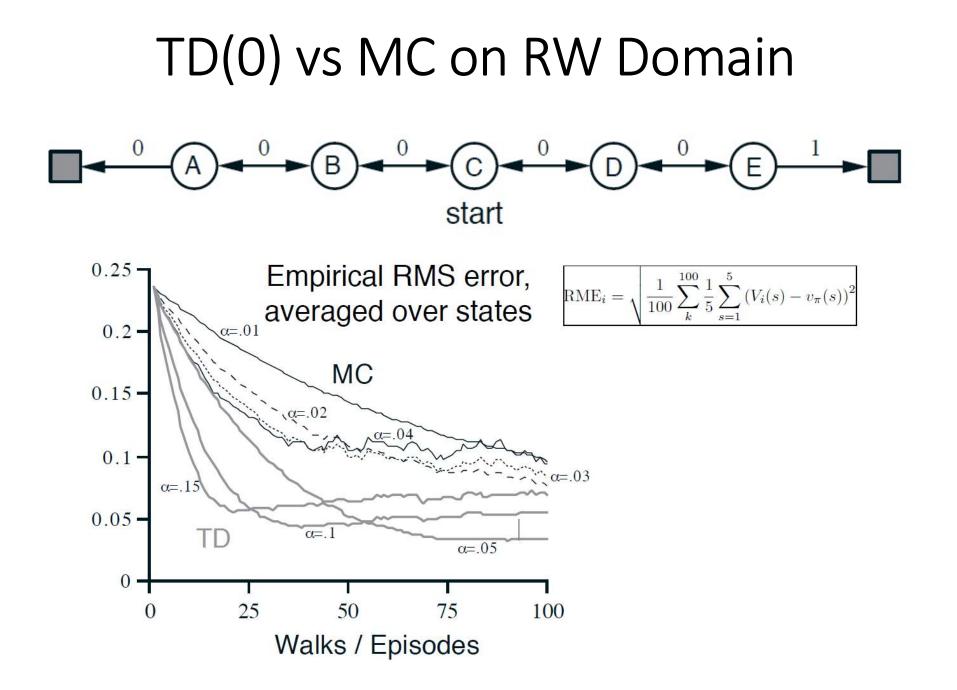
- Both converge to v_{π} in the limit
- TD does bootstrapping, MC does not
- MC must wait until the end of episodes
 - Episodes can be very long
 - Can't handle continuing domains
- TD updates occur after every action
 - Can be used on continuing domains
 - Can be implemented in an online fashion



- C is the start state
 - Termination on either end
- Go left or right with equal probability

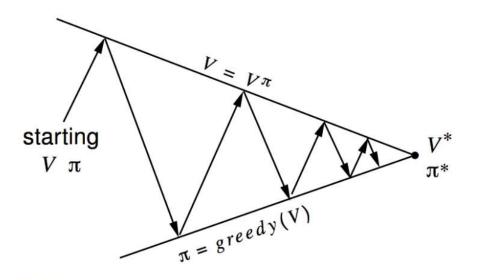
•
$$v_{\pi} = \left[\frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}\right]$$



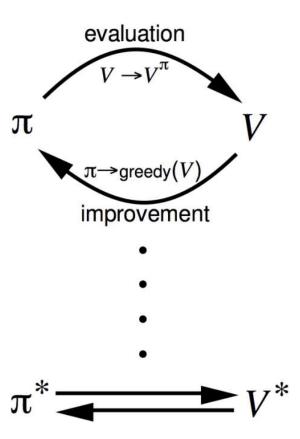


TD Control

• Will once again do Generalized Policy Iteration



Policy evaluation Estimate v_{π} e.g. Iterative policy evaluation Policy improvement Generate $\pi' \ge \pi$ e.g. Greedy policy improvement



TD Q-Value Updates

- Will use TD(0) updates on Q-values
 - Recall that we want estimates to help choose actions

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \cdot [R_{t+1} + \gamma \cdot Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

TD Q-Value Updates

- Will use TD(0) updates on Q-values
 - Recall that we want estimates to help choose actions

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \cdot (R_{t+1} + \gamma \cdot Q(S_{t+1} A_{t+1}) - Q(S_t, A_t))$$

- Where the name Sarsa comes from
 - On-policy TD control algorithm

Sarsa On-Policy Control

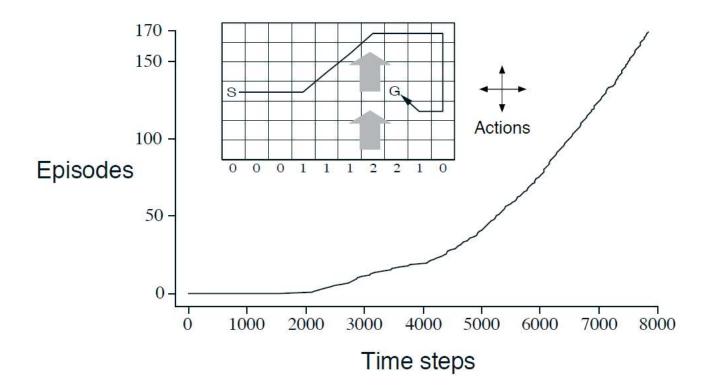
Initialize $Q(s, a), \forall s \in S, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode): Initialize SChoose A from S using policy derived from Q (e.g., ϵ -greedy) Repeat (for each step of episode): Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ϵ -greedy) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$ $S \leftarrow S'; A \leftarrow A';$ until S is terminal

Sarsa on Windy Gridworld

- 4-connected grid, but wind pushes the agent up
 - Reward of -1 on every time step before goal is reached

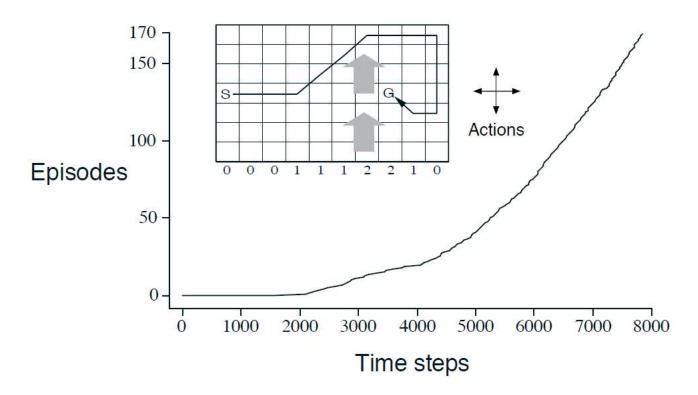
Sarsa on Windy Gridworld

• Use $\epsilon = 0.1, \gamma = 1, \alpha = 0.5$, initial Q(s, a) = 0



Sarsa on Windy Gridworld

• Use $\epsilon = 0.1, \gamma = 1, \alpha = 0.5$, initial Q(s, a) = 0



• MC would really struggle due to episode lengths

Sarsa Properties

- Sarsa converges to the best ϵ -greedy policy
- Can also get it to converge to optimal policy
 - Each state-action pair visited infinite number of times
 - ϵ converges to 0 over time (*i.e.* $\epsilon = 1/t$)

Off-Policy TD Learning

Sarsa uses the action it will select for bootstrapping

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \cdot [R_{t+1} + \gamma \cdot Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

This is the action that will be chosen by ϵ -greedy

- It is not the action it "should" have chosen

Q-Learning Update

• Q-learning uses the following update

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \cdot [R_{t+1} + \gamma \cdot \max_a Q(S_{t+1}, a) - Q(S_t, A_t)]$$

This is the action that should have been chosen

- ϵ -greedy may pick something else

Q-Learning Update

• Q-learning uses the following update

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \cdot [R_{t+1} + \gamma \cdot \max_a Q(S_{t+1}, a) - Q(S_t, A_t)]$$

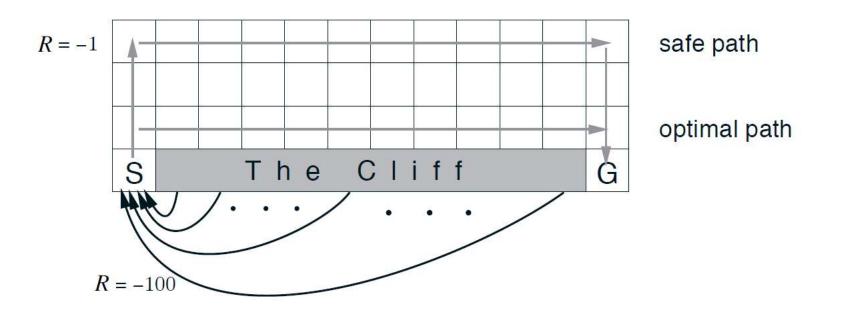
- Directly approximates q^* , regardless of policy used
 - Allows for proof of convergence to q^* if the followed policy guarantees all state-action pairs are seen
 - This is why it is **off-policy**

Q-Learning

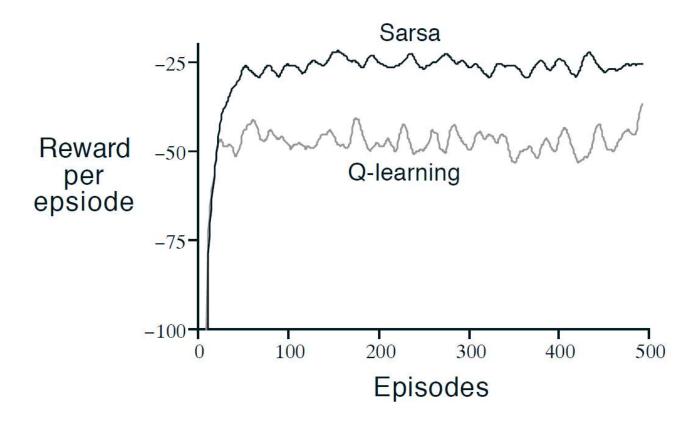
 $\begin{array}{ll} \mbox{Initialize } Q(s,a), \forall s \in \mathbb{S}, a \in \mathcal{A}(s), \mbox{ arbitrarily, and } Q(terminal-state, \cdot) = 0 \\ \mbox{Repeat (for each episode):} \\ \mbox{ Initialize } S \\ \mbox{Repeat (for each step of episode):} \\ \mbox{ Choose } A \mbox{ from } S \mbox{ using policy derived from } Q \mbox{ (e.g., ϵ-greedy)} \\ \mbox{ Take action } A, \mbox{ observe } R, S' \\ Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A) \big] \\ S \leftarrow S' \\ \mbox{ until } S \mbox{ is terminal} \end{array}$

Sarsa vs. Q-Learning

- Consider grid world, -1 per step, -1000 if fall off cliff
 - 4-connected, deterministic actions

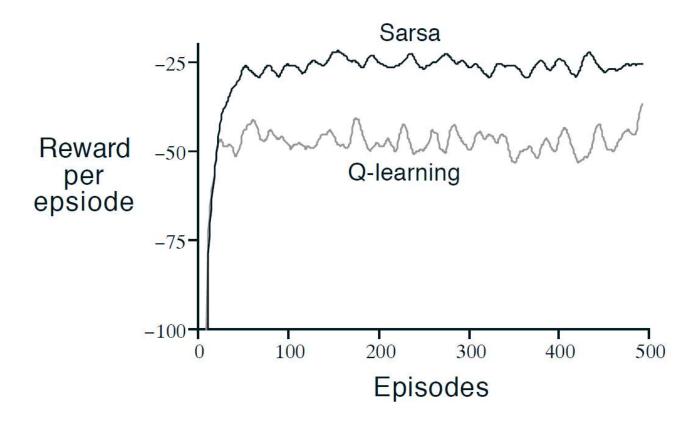


Sarsa vs. Q-Learning



- Both converge to "their optimal" policy
 - So what is happening?

Sarsa vs. Q-Learning



- Both converge to "their optimal" policy
 - So what is happening? Sarsa takes ϵ into account

Summary

- TD update online based on one-step returns
 - Can be used for episodic and continuing tasks
- TD prediction using TD updates
 - Often faster than MC
- Sarsa on-policy control
- Q-learning off-policy control