Heuristic Search Algorithms and Markov Decision Processes

Rick Valenzano and Sheila McIlraith

Recap of Last Week

- Considered variants of sequential decision-making
 - Deterministic vs Non-Deterministic vs Stochastic
 - Fully Observable vs. Partially Observable
 - Model-based vs Model-free
 - Goal-seeking vs. Reward seeking
- Started with classical planning
 - Fully observable, deterministic, implicitly defined transition system, defined start state and goal tests
- Heuristic search-based planning
 - Looks at planning as graph search

Recap of Last Week

Can use Dijkstra's search

- Or incremental version, **Uniform-Cost Search**
- Uniform-cost search ignores the state information
 Not practical
- Heuristic functions encode state information
 - Provides an estimate of the cost-to-go
 - Encodes domain information or automatically generated

This Week

- Hill climbing techniques
- The A* Algorithm

 Completeness and optimality
- Greedy Best-First Search
- Weighted A*
 - Bounded suboptimality
- Markov Decision Processes
 - Stochastic state transitions
 - Rewards vs goals
 - Value Functions, Bellman equations

Employing Heuristics

- Given a heuristic function *h*
 - What do we do with it?

• What did we do now?

- Multiple options
 - Pick "best of bad options"
 - Pick randomly
 - All kinds of local search strategies

Enforced Hill-Climbing

Enforced Hill-Climbing

Enforced Hill-Climbing

Search Algorithm Properties

Optimality

An solution found by the search algorithm is guaranteed to be optimal.

Completeness

The algorithm is guaranteed to find a solution to a given problem if one exists.

Search Algorithm Properties

Optimality

An solution found by the search algorithm is guaranteed to be optimal.

– Hill-climbing is not optimal.

Completeness

The algorithm is guaranteed to find a solution to a given problem if one exists.

– Hill-climbing is not complete.

• So what is hill-climbing good for?

Uniform-Cost Search

Optimality

An solution found by the search algorithm is guaranteed to be optimal.

- Uniform-cost search is optimal

Completeness

The algorithm is guaranteed to find a solution to a given problem if one exists.

- Uniform-cost search is complete on finite state-spaces.


```
def UniformCostSearch(s<sub>I</sub>):
         OPEN \leftarrow \{s_I\}, CLOSED \leftarrow \{\},\
         g(s_I) = 0, parent(s_I) = \emptyset
         while OPEN \neq \{\}:
                  p \leftarrow \operatorname{argmin}_{\{s' \in OPEN\}} g(s')
                  if p is a goal, return path to p
                  for c \in children(p):
                           if c \notin OPEN \cup CLOSED:
                                    g(c) = g(p) + \kappa(p, c)
                                    parent(c) = p
                                    OPEN \leftarrow OPEN \cup \{c\}
                           else if g(c) > g(p) + \kappa(p,c):
                                    g(c) = g(p) + \kappa(p, c)
                                    parent(c) = p
                                    if c \in CLOSED:
                                             OPEN \leftarrow OPEN \cup \{c\}
                                             CLOSED \leftarrow CLOSED - \{c\}
                  OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}
         return No solution exists
```

def UniformCostSearch(*s*_{*I*}): $OPEN \leftarrow \{s_I\}, CLOSED \leftarrow \{\},\$ $g(s_I) = 0, parent(s_I) = \emptyset$ while $OPEN \neq \{\}$: $\mathbf{p} \leftarrow \operatorname{argmin}_{\{s' \in OPEN\}} g(s')$ if p is a goal, return path to p **for** $c \in children(p)$: **if** $c \notin OPEN \cup CLOSED$: $g(c) = g(p) + \kappa(p, c)$ parent(c) = p $OPEN \leftarrow OPEN \cup \{c\}$ else if $g(c) > g(p) + \kappa(p,c)$: $g(c) = g(p) + \kappa(p, c)$ parent(c) = pif $c \in CLOSED$: $OPEN \leftarrow OPEN \cup \{c\}$ $CLOSED \leftarrow CLOSED - \{c\}$ $OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}$ **return** No solution exists

def UniformCostSearch(*s*_{*I*}): $OPEN \leftarrow \{s_I\}, CLOSED \leftarrow \{\},\$ $g(s_I) = 0, parent(s_I) = \emptyset$ while $OPEN \neq \{\}$: **p** ← SelectNode(*OPEN*) if p is a goal, return path to p **for** $c \in children(p)$: **if** $c \notin OPEN \cup CLOSED$: $g(c) = g(p) + \kappa(p, c)$ parent(c) = p $OPEN \leftarrow OPEN \cup \{c\}$ **else if** $g(c) > g(p) + \kappa(p, c)$: $g(c) = g(p) + \kappa(p, c)$ parent(c) = pif $c \in CLOSED$: $OPEN \leftarrow OPEN \cup \{c\}$ $CLOSED \leftarrow CLOSED - \{c\}$ $OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}$ **return** No solution exists

Open-Closed List Algorithms

Open-Closed List (OCL) algorithms

- Generalizes uniform-cost search
- Allows for different ways of selecting nodes from OPEN

• Will use the heuristic function in SelectNode

Best-First Search

Best-first search using an evaluation function

 $\Phi: \mathsf{nodes} \to \mathbb{R}^{\geq 0}$

Defines the "value" of a node
 – Always selects the node with the lowest Φ-cost

def SelectNode(*OPEN*): **return** argmin_{ $n' \in OPEN$ } $\Phi(n')$

Best-First Search

Best-first search using an evaluation function

 $\Phi: \mathsf{nodes} \to \mathbb{R}^{\geq 0}$

def SelectNode(*OPEN*): return $\operatorname{argmin}_{\{n' \in OPEN\}} \Phi(n')$

• Uniform-cost search uses $\Phi(n) = g(n)$

OCL Terminology

g(A) = 8, h(A) = 9

OCL Terminology

$g(A) = 8, h(A) = 9, g^*(A) = 6$

$g(A) = 8, h(A) = 9, g^*(A) = 6, h^*(A) = 12$

$g(A) = 8, h(A) = 9, g^*(A) = 6, h^*(A) = 12$ C* is the optimal solution path to the problem

 $g(A) = 8, h(A) = 9, g^*(A) = 6, h^*(A) = 12$ C^* is the optimal solution path to the problem $C^* = 18$ if it passes through A

Candidate Path Lemma


```
def OCL(s_I):
OPEN \leftarrow \{s_I\}, CLOSED \leftarrow \{\},\
g(s_I) = 0, parent(s_I) = \emptyset
while OPEN \neq \{\}:
         p \leftarrow \text{SelectNode}(OPEN)
         if p is a goal, return path to p
         for c \in children(p):
                  if c \notin OPEN \cup CLOSED:
                          g(c) = g(p) + \kappa(p, c)
                          parent(c) = p
                          OPEN \leftarrow OPEN \cup \{c\}
                  else if g(c) > g(p) + \kappa(p,c):
                          g(c) = g(p) + \kappa(p, c)
                          parent(c) = p
                          if c \in CLOSED:
                                   OPEN \leftarrow OPEN \cup \{c\}
                                   CLOSED \leftarrow CLOSED - \{c\}
         OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}
return No solution exists
```


Candidate Path Lemma

Candidate Path Lemma

def OCL(s_I): $OPEN \leftarrow \{s_I\}, CLOSED \leftarrow \{\},\$ $g(s_I) = 0, parent(s_I) = \emptyset$ while $OPEN \neq \{\}$: p ← SelectNode(*OPEN*) **if** p is a goal, **return** path to p **for** $c \in children(p)$: if $c \notin OPEN \cup CLOSED$: $g(c) = g(p) + \kappa(p, c)$ parent(c) = p $OPEN \leftarrow OPEN \cup \{c\}$ **else if** $g(c) > g(p) + \kappa(p, c)$: $g(c) = g(p) + \kappa(p, c)$ parent(c) = pif $c \in CLOSED$: $OPEN \leftarrow OPEN \cup \{c\}$ $CLOSED \leftarrow CLOSED - \{c\}$ $OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}$ **return** No solution exists

Candidate Path Lemma

Candidate Path Lemma

OCL Completeness

Any OCL algorithm is complete on any solvable problem with a finite state-space.

Proof Sketch

1. The candidate path lemma ensures that *OPEN* can never become empty before a goal state is expanded.

OCL Completeness

Any OCL algorithm is complete on any solvable problem with a finite state-space.

Proof Sketch

1. The candidate path lemma ensures that *OPEN* can never become empty before a goal state is expanded.

2. There are a finite number of paths to any node, so every node can only be re-expanded a finite number of times.

The A* Algorithm

Best-first search using an evaluation function

 $\Phi: \mathsf{nodes} \to \mathbb{R}^{\geq 0}$

def SelectNode(*OPEN*): **return** $\operatorname{argmin}_{\{n' \in OPEN\}} \Phi(n')$

• $A^* uses \Phi(n) = f(n) = g(n) + h(n)$

The A* Algorithm

def SelectNode(*OPEN*): return $\operatorname{argmin}_{\{n' \in OPEN\}} g(n') + h(n')$

Heuristic Admissibility

- A*'s optimality relies on **admissibility**
 - Ensures the heuristic never overestimates the cost to go
 - "One-sided error"

Heuristic Admissibility

Heuristic *h* is **admissible** if $h(n) \le h^*(n)$ for all *n*.

Optimality of A*

Optimality of A*

If the heuristic being used is admissible, then any solution found by A* will be optimal.

Optimality of A*

Optimality of A*

If the heuristic being used is admissible, then any solution found by A* will be optimal.

Proof Sketch.

By contradiction, show that a goal state along a suboptimal solution cannot be expanded before all the nodes along the optimal solution path.

Optimality of Uniform-Cost Search

Optimality of Uniform-Cost Search

Uniform-cost search will only find optimal solutions.

Optimality of Uniform-Cost Search

Optimality of Uniform-Cost Search

Uniform-cost search will only find optimal solutions.

Proof Sketch

Uniform-cost search is equivalent to A^* using the heuristic *h* such that h(n) = 0 for all *n*.

Using the Heuristic to Prune

Avoiding Node Expansions

If the heuristic being used is admissible, then A* will not expand any nodes for which $f(n) > C^*$.

Using the Heuristic to Prune

Avoiding Node Expansions

If the heuristic being used is admissible, then A* will not expand any nodes for which $f(n) > C^*$.

Proof Sketch.

Before a goal is found, there will always be a node n' from the optimal solution path on *OPEN* such that

$$f(n') = g(n') + h(n') = g^*(n') + h(n')$$

$$\leq g^*(n') + h^*(n') = C^*$$

A* vs. Uniform-Cost Search

• Uniform-cost search will not expand any *n* such that

 $g(n) > C^*$

- A* may be able to expand fewer unique states than uniform-cost search due to heuristic pruning
- But what about re-expansions?

Heuristic Consistency

Heuristic *h* is **consistent** if for any pair of node *p* and *c*, where *c* is a child of *p*, the following holds:

 $h(p) \leq h(c) + \kappa(p,c)$

Heuristic Consistency

Heuristic *h* is **consistent** if for any pair of node *p* and *c*, where *c* is a child of *p*, the following holds:

 $h(p) \leq h(c) + \kappa(p,c)$

Heuristic Consistency

Heuristic *h* is **consistent** if for any pair of node *p* and *c*, where *c* is a child of *p*, the following holds:

 $h(p) \le h(c) + \kappa(p, c)$

Consistency guarantees a heuristic version of the triangle inequality:

 $h(p) \le h(d) + \kappa(p,c) + \kappa(c,d)$

Re-expansion Theorem

If the heuristic being used by A* is consistent, then A* will never **reopen** a node.

Re-expansion Theorem

If the heuristic being used by A* is consistent, then A* will never **reopen** a node.

or alternatively

If the heuristic being used by A^* is consistent, then whenever A^* expands a node n, $g(n) = g^*(n)$

A* vs. Uniform-Cost Search

- A* will do at least as much pruning as UCS
- If the heuristic is consistent, no node will be expanded more than once
- If the heuristic allows some pruning, A* should be faster than UCS

The A* Algorithm

- Recall proof that A* is optimal
- Similar argument shows A* expands every node with f(n) < C* where C* is the optimal solution cost
 - This is how it proves that the optimal solution has been found
- Proving optimality of a found solution path can make A* prohibitively expensive

Weighted A* (WA*)

- Weighted A* is also a best-first search algorithm
- def SelectNode(*OPEN*): return $\operatorname{argmin}_{\{n' \in OPEN\}} \Phi(n')$
- WA* uses $\Phi(n) = f_w(n) = g(n) + w \cdot h(n)$
 - The **weight** *w* is an parameter where $w \ge 1$

Weighted A* (WA*)

 $f_w(n) = g(n) + w \cdot h(n)$

- The weight impacts the relative importance of the *h*-cost and the *g*-cost
 - *h*-cost dominates the evaluation for large *w*
 - WA* becomes greedier on h as w increases

Weighted A* (WA*)

 $f_w(n) = g(n) + w \cdot h(n)$

Weighted A* Properties

Optimality

Weighted A* is not an optimal algorithm.

Completeness

Weighted A* is a complete algorithm.

Weighted A* Suboptimality

Bounded Suboptimality

If the heuristic being used is admissible, then any solution found by WA* will cost no more than $w \cdot C^*$.

Weighted A* Suboptimality

Bounded Suboptimality

If the heuristic being used is admissible, then any solution found by WA* will cost no more than $w \cdot C^*$.

Proof Sketch.

This is ensured by the f_w and the way nodes are selected for expansion.

Greedy Best-First Search

Greedy Best-First Search (GBFS) is WA*
 "in the limit"

– Still a best-first search, but maximally greedy on *h*

- def SelectNode(*OPEN*): return $\operatorname{argmin}_{\{n' \in OPEN\}} \Phi(n')$
- WA* uses Φ(n) = f_{GBFS}(n) = h(n)
 Ignores the heuristic completely
- Also called Pure Heuristic Search

Greedy Best-First Search

- GBFS is commonly used in domain-independent planners
- Usually faster than A* and low-weight WA*
- GBFS is complete but suboptimal
 No bound on suboptimality

Modern Optimal Search Research

- Low memory algorithms
 IDA*, RBFS, EPEA*, SMA*, …
- Better heuristics
- Pruning methods for transpositions
 - Stubborn sets
- Bidirectional Search
 MM, SFBDS, ...

Suboptimal Search Research

Non-uniform cost domains

- GBFS and WA* can struggle if action costs vary greatly
- Understanding impact of different decisions
 Re-expansions, tie-breaking, weight value
- Exploration in GBFS
 - ϵ -greedy, Type-based exploration, novelty-based pruning

Summary

- Hill-climbing as a simple way to use a heuristic
- Generalized UCS to the OCL algorithm framework
 Showed how Best-First Search fits into this framework
- Introduced A* as an OCL algorithm
 - Considered several properties
- Considered WA* and GBFS as suboptimal alternatives

