
Heuristic Search Algorithms
and Markov Decision Processes

Rick Valenzano and Sheila McIlraith



Recap of Last Week

 Considered variants of sequential decision-making
– Deterministic vs Non-Deterministic vs Stochastic
– Fully Observable vs. Partially Observable
– Model-based vs Model-free
– Goal-seeking vs. Reward seeking

 Started with classical planning
– Fully observable, deterministic, implicitly defined 

transition system, defined start state and goal tests

 Heuristic search-based planning
– Looks at planning as graph search



Recap of Last Week

 Can use Dijkstra’s search
– Or incremental version, Uniform-Cost Search

 Uniform-cost search ignores the state information
– Not practical

 Heuristic functions encode state information
– Provides an estimate of the cost-to-go

– Encodes domain information or automatically generated



This Week

 Hill climbing techniques

 The A* Algorithm
– Completeness and optimality

 Greedy Best-First Search

 Weighted A*
– Bounded suboptimality

 Markov Decision Processes
– Stochastic state transitions
– Rewards vs goals
– Value Functions, Bellman equations



Employing Heuristics

 Given a heuristic function 
– What do we do with it?



Hill-Climbing

 Commit to the “best” child according to 

10

Start



Hill-Climbing

 Commit to the “best” child according to 

10

9

10

11

Start



Hill-Climbing

 Commit to the “best” child according to 

10

9

Start



Hill-Climbing

 Commit to the “best” child according to 

10

9

10

8

10

Start



Hill-Climbing

 Commit to the “best” child according to 

10

9 8

Start



Hill-Climbing

 Commit to the “best” child according to 

10

9 8 9

8

Start



Hill-Climbing

 What did we do now?

10

9 8 9

8

Start



Hill-Climbing

 Multiple options
– Pick “best of bad options”

– Pick randomly

– All kinds of local search strategies



Enforced Hill-Climbing

10

10

9

10

Start



Enforced Hill-Climbing

10 9

Start



Enforced Hill-Climbing

10 9

Start

10

11

10



Enforced Hill-Climbing

10 9

Start

10

11

10 10

9



Enforced Hill-Climbing

10 9

Start

10

11

10

11

10

10

9



Enforced Hill-Climbing

10 9

Start

10

11

10

9

10

11

10

10

9



Enforced Hill-Climbing

10 9

Start

10

11

10

9

10

11

10

10

9

8

9



Enforced Hill-Climbing

10 9

Start
10

9

8



Enforced Hill-Climbing

10 9

Start
10

9

8



Search Algorithm Properties

Optimality

An solution found by the search algorithm is 
guaranteed to be optimal.

Completeness

The algorithm is guaranteed to find a solution to a 
given problem if one exists.



Search Algorithm Properties

Optimality

An solution found by the search algorithm is 
guaranteed to be optimal.

– Hill-climbing is not optimal.

Completeness

The algorithm is guaranteed to find a solution to a 
given problem if one exists.

– Hill-climbing is not complete.



Hill-Climbing

 So what is hill-climbing good for?



Uniform-Cost Search

Optimality

An solution found by the search algorithm is 
guaranteed to be optimal.

– Uniform-cost search is optimal

Completeness

The algorithm is guaranteed to find a solution to a 
given problem if one exists.

– Uniform-cost search is complete on finite state-spaces.



while :
ᇲ

if is a goal, return path to 
for

if :

else if :

if :

return No solution exists



while :

if is a goal, return path to 
for

if :

else if :

if :

return No solution exists



while :

if is a goal, return path to 
for

if :

else if :

if :

return No solution exists



Open-Closed List Algorithms

 Open-Closed List (OCL) algorithms
– Generalizes uniform-cost search

– Allows for different ways of selecting nodes from OPEN

 Will use the heuristic function in SelectNode



Best-First Search

 Best-first search using an evaluation function

 Defines the “value” of a node
– Always selects the node with the lowest -cost

ᇲ



Best-First Search

 Best-first search using an evaluation function

ᇲ

 Uniform-cost search uses 



OCL Terminology

10 9

Start

10 9

A



OCL Terminology

10 9

Start

10 9

A



OCL Terminology

10 9

Start

10 9

A

0

Goal



OCL Terminology

10 9

Start

10 9

A

is the optimal solution path to the problem

0

Goal



OCL Terminology

10 9

Start

10 9

A

is the optimal solution path to the problem
if it passes through 

0

Goal



OCL Algorithms

Candidate Path Lemma

Let be an optimal path to a given 
problem. Then at any time prior to the expansion of a 
goal node, there will be some node from P in OPEN
with the optimal g-cost (ie. ).

9 6 2

Start

7 2



OCL Algorithms

Candidate Path Lemma

Let be an optimal path to a given 
problem. Then at any time prior to the expansion of a 
goal node, there will be some node from P in OPEN
with the optimal g-cost (ie. ).

9 6 2

Start

7 2



OCL Algorithms

Candidate Path Lemma

Let be an optimal path to a given 
problem. Then at any time prior to the expansion of a 
goal node, there will be some node from P in OPEN
with the optimal g-cost (ie. ).

9 6 2

Start

7 2



OCL Algorithms

Candidate Path Lemma

Let be an optimal path to a given 
problem. Then at any time prior to the expansion of a 
goal node, there will be some node from P in OPEN
with the optimal g-cost (ie. ).

9 6 2

Start

7 2



OCL Algorithms

Candidate Path Lemma

Let be an optimal path to a given 
problem. Then at any time prior to the expansion of a 
goal node, there will be some node from P in OPEN
with the optimal g-cost (ie. ).

9 6 2

Start

7 2



while :

if is a goal, return path to 
for

if :

else if :

if :

return No solution exists



while :

if is a goal, return path to 
for

if :

else if :

if :

return No solution exists

Node Reopening



OCL Algorithms

Candidate Path Lemma

Let be an optimal path to a given 
problem. Then at any time prior to the expansion of a 
goal node, there will be some node from P in OPEN
with the optimal g-cost (ie. ).

9 6 2

Start

7 2



OCL Algorithms

Candidate Path Lemma

Let be an optimal path to a given 
problem. Then at any time prior to the expansion of a 
goal node, there will be some node from P in OPEN
with the optimal g-cost (ie. ).

9 6 2

Start

7 2



while :

if is a goal, return path to 
for

if :

else if :

if :

return No solution exists



OCL Algorithms

Candidate Path Lemma

Let be an optimal path to a given 
problem. Then at any time prior to the expansion of a 
goal node, there will be some node from P in OPEN
with the optimal g-cost (ie. ).

9 6 2

Start

7 2



OCL Algorithms

Candidate Path Lemma

Let be an optimal path to a given 
problem. Then at any time prior to the expansion of a 
goal node, there will be some node from P in OPEN
with the optimal g-cost (ie. ).

9 6 2

Start

7 2



OCL Algorithms

OCL Completeness

Any OCL algorithm is complete on any solvable 
problem with a finite state-space.

Proof Sketch

1. The candidate path lemma ensures that OPEN can 
never become empty before a goal state is expanded.



OCL Algorithms

OCL Completeness

Any OCL algorithm is complete on any solvable 
problem with a finite state-space.

Proof Sketch

1. The candidate path lemma ensures that OPEN can 
never become empty before a goal state is expanded.

2. There are a finite number of paths to any node, so 
every node can only be re-expanded a finite number of 
times.



The A* Algorithm

 Best-first search using an evaluation function

ᇲ

 A* uses 



The A* Algorithm

ᇲ

10 9

Start

10 9

A



Heuristic Admissibility

 A*’s optimality relies on admissibility
– Ensures the heuristic never overestimates the cost to go

– “One-sided error”

Heuristic Admissibility

Heuristic is admissible if for all .



Optimality of A*

Optimality of A*

If the heuristic being used is admissible, then any 
solution found by A* will be optimal.



Optimality of A*

Optimality of A*

If the heuristic being used is admissible, then any 
solution found by A* will be optimal.

Proof Sketch.

By contradiction, show that a goal state along a 
suboptimal solution cannot be expanded before all the 
nodes along the optimal solution path.



Optimality of Uniform-Cost Search

Optimality of Uniform-Cost Search

Uniform-cost search will only find optimal solutions.



Optimality of Uniform-Cost Search

Optimality of Uniform-Cost Search

Uniform-cost search will only find optimal solutions.

Proof Sketch

Uniform-cost search is equivalent to A* using the 
heuristic such that for all .



Using the Heuristic to Prune

Avoiding Node Expansions

If the heuristic being used is admissible, then A* will 
not expand any nodes for which .



Using the Heuristic to Prune

Avoiding Node Expansions
If the heuristic being used is admissible, then A* will 
not expand any nodes for which .

Proof Sketch.
Before a goal is found, there will always be a node 
from the optimal solution path on OPEN such that



A* vs. Uniform-Cost Search

 Uniform-cost search will not expand any such that

 A* may be able to expand fewer unique states than 
unif0rm-cost search due to heuristic pruning

 But what about re-expansions?



while :

if is a goal, return path to 
for

if :

else if :

if :

return No solution exists

Node Reopening



Heuristic Consistency

Heuristic Consistency

Heuristic is consistent if for any pair of node and 
, where is a child of , the following holds:



Heuristic Consistency

Heuristic Consistency

Heuristic is consistent if for any pair of node and 
, where is a child of , the following holds:

10 9
1



Heuristic Consistency

Heuristic Consistency

Heuristic is consistent if for any pair of node and 
, where is a child of , the following holds:

10 8
1



Heuristic Consistency

 Consistency guarantees a heuristic version of the 
triangle inequality:

10 9
1

6
3



Heuristic Consistency

Re-expansion Theorem

If the heuristic being used by A* is consistent, then A* 
will never reopen a node.



Heuristic Consistency

Re-expansion Theorem

If the heuristic being used by A* is consistent, then A* 
will never reopen a node.

or alternatively

If the heuristic being used by A* is consistent, then 
whenever A* expands a node , 



A* vs. Uniform-Cost Search

 A* will do at least as much pruning as UCS

 If the heuristic is consistent, no node will be 
expanded more than once

 If the heuristic allows some pruning, A* should be 
faster than UCS



The A* Algorithm

 Recall proof that A* is optimal

 Similar argument shows A* expands every node with 
where is the optimal solution cost

– This is how it proves that the optimal solution has been 
found

 Proving optimality of a found solution path can 
make A* prohibitively expensive



Weighted A* (WA*)

 Weighted A* is also a best-first search algorithm

ᇲ

 WA* uses 
– The weight is an parameter where 



Weighted A* (WA*)

 The weight impacts the relative importance of the 
-cost and the -cost
– -cost dominates the evaluation for large 

– WA* becomes greedier on as increases



Weighted A* (WA*)

10

Start

10

A

0

B

Goal



A* vs. WA*

S

G

S

G



Weighted A* Properties

Optimality

Weighted A* is not an optimal algorithm.

Completeness

Weighted A* is a complete algorithm.



Weighted A* Suboptimality

Bounded Suboptimality

If the heuristic being used is admissible, then any 
solution found by WA* will cost no more than .



Weighted A* Suboptimality

Bounded Suboptimality

If the heuristic being used is admissible, then any 
solution found by WA* will cost no more than .

Proof Sketch.

This is ensured by the and the way nodes are 
selected for expansion.



Greedy Best-First Search

 Greedy Best-First Search (GBFS) is WA* 
“in the limit”
– Still a best-first search, but maximally greedy on 

ᇲ

 WA* uses 
– Ignores the heuristic completely

 Also called Pure Heuristic Search



Greedy Best-First Search

 GBFS is commonly used in domain-independent 
planners

 Usually faster than A* and low-weight WA*

 GBFS is complete but suboptimal
– No bound on suboptimality



Modern Optimal Search Research

 Low memory algorithms
– IDA*, RBFS, EPEA*, SMA*, …

 Better heuristics

 Pruning methods for transpositions
– Stubborn sets

 Bidirectional Search
– MM, SFBDS, …



Suboptimal Search Research

 Non-uniform cost domains
– GBFS and WA* can struggle if action costs vary greatly

 Understanding impact of different decisions
– Re-expansions, tie-breaking, weight value

 Exploration in GBFS 
– -greedy, Type-based exploration, novelty-based pruning



Summary

 Hill-climbing as a simple way to use a heuristic

 Generalized UCS to the OCL algorithm framework
– Showed how Best-First Search fits into this framework

 Introduced A* as an OCL algorithm
– Considered several properties

 Considered WA* and GBFS as suboptimal 
alternatives


