An Introduction to Heuristic Search-Based Planning

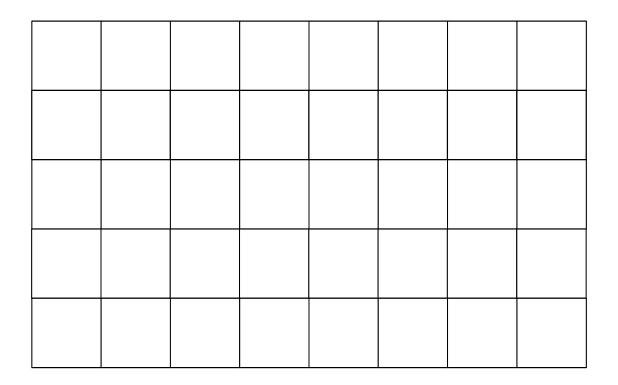
Rick Valenzano and Sheila McIlraith

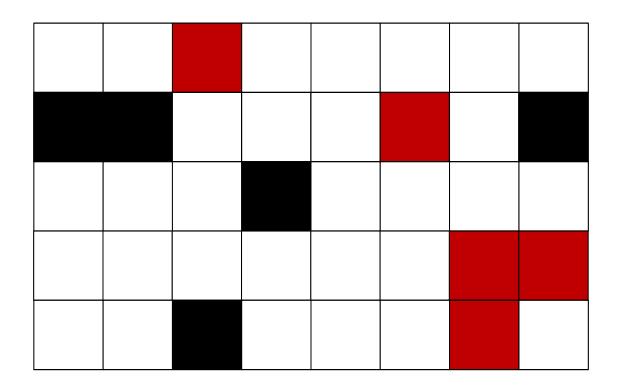
Lecture Plan

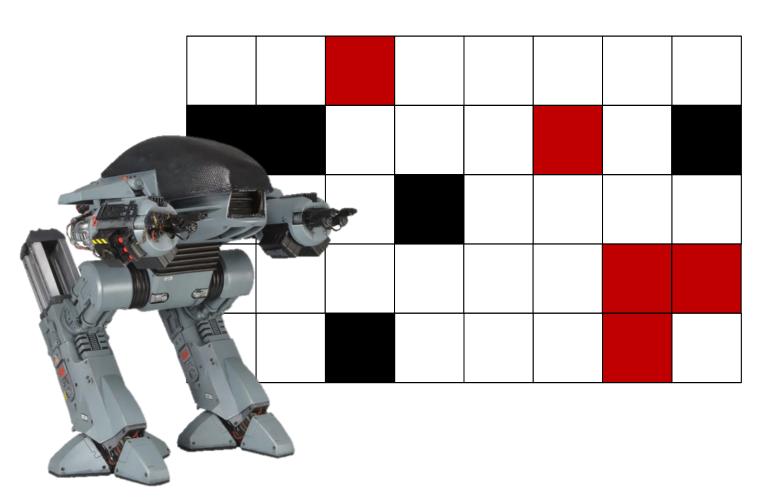
- Planning as pathfinding in a graph
 - Heuristic-based planning
- From Dijkstra's to Uniform-Cost Search
- Heuristics from abstraction and relaxation
- The A* Algorithm

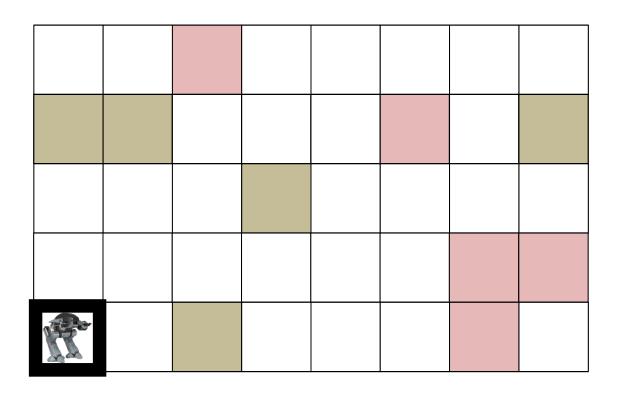
Quick Survey

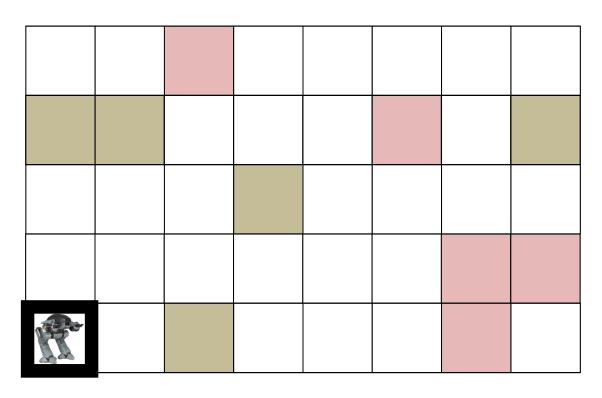
- A*?
- IDA*?
- Weighted A*?
- Greedy Best-First Search?
- Enforced Hill-Climbing?
- A_{ϵ}^* ? EES?







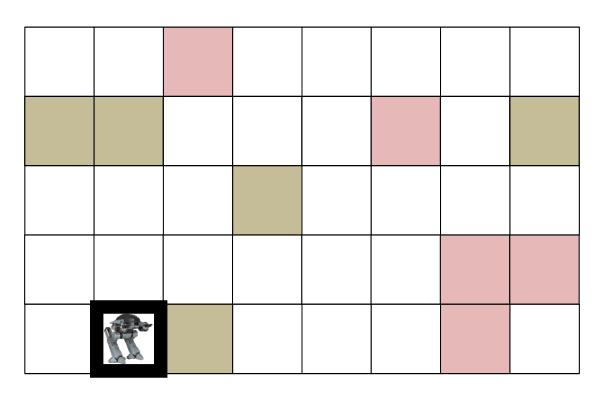




Move Action: MOVE-0-0-1

Pre: AT-0-0, WHITE-0-1

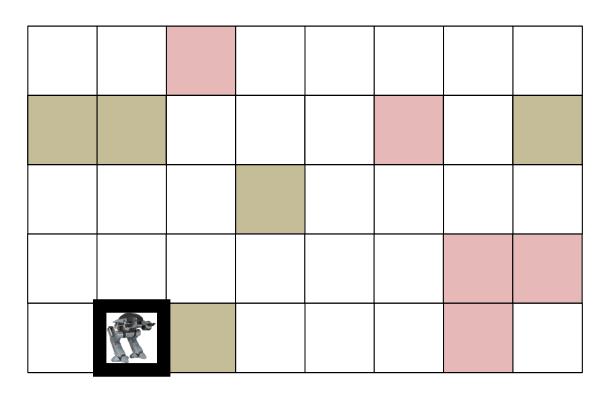
Post: AT-0-1, not(AT-0-0)



Move Action: MOVE-0-0-1

Pre: AT-0-0, WHITE-0-1

Post: AT-0-1, not(AT-0-0)

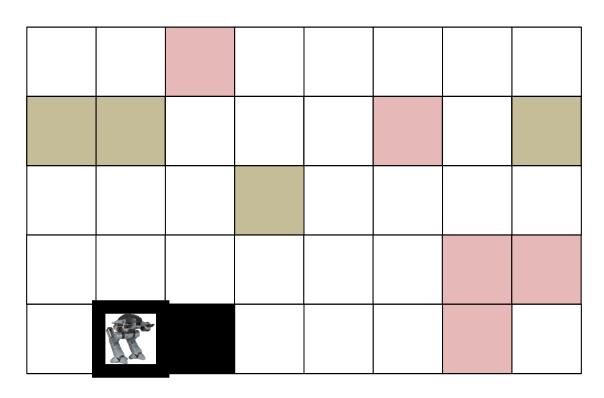


Paint Action: PAINT-B-0-1-0-2

Pre: AT-0-1, LOADED-B,

WHITE-0-2, NEED-B-0-2

Post: BLACK-0-2, not(WHITE-0-2)

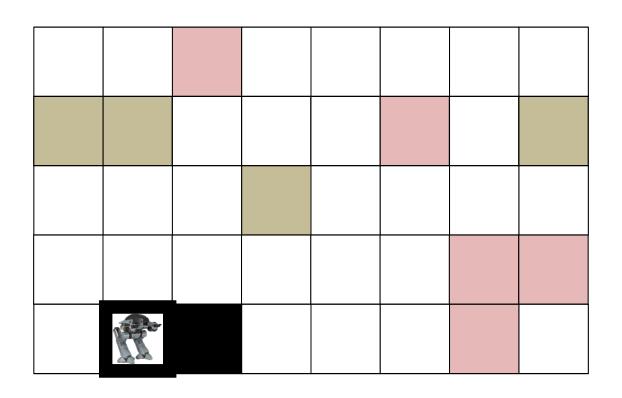


Paint Action: PAINT-B-0-1-0-2

Pre: AT-0-1, LOADED-B,

WHITE-0-2, NEED-B-0-2

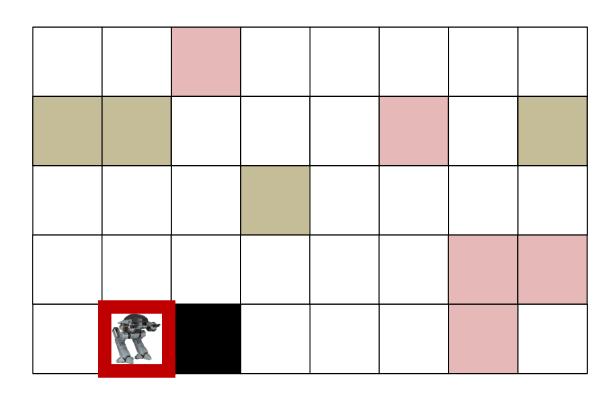
Post: BLACK-0-2, not(WHITE-0-2)



Load Action: LOAD-RED

Pre: LOADED-B

Post: LOADED-R, not(LOADED-B)



Load Action: LOAD-RED

Pre: LOADED-B

Post: LOADED-R, not(LOADED-B)

Initial	State	Goal
	~ cate	

AT-0-0 BLACK-0-2

LOADED-B BLACK-3-0

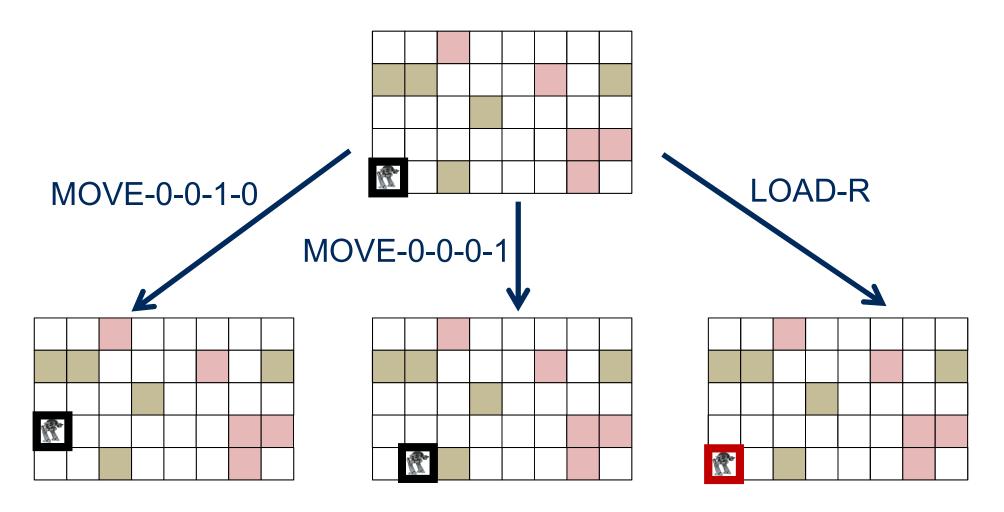
WHITE-0-0 BLACK-3-1

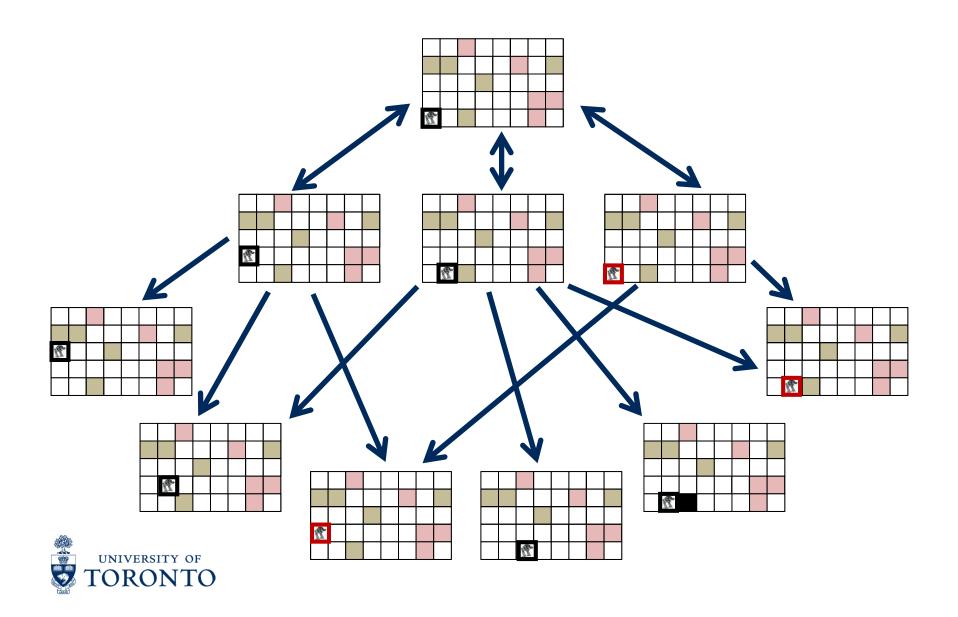
WHITE-0-1 RED-4-2

WHITE-0-2 BLACK-2-3

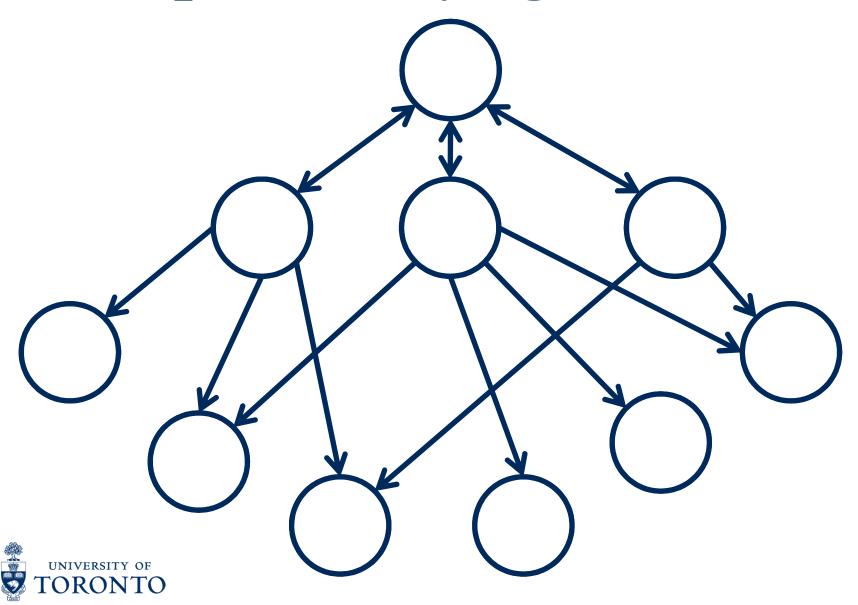
NEED-B-0-2 RED-3-5

...

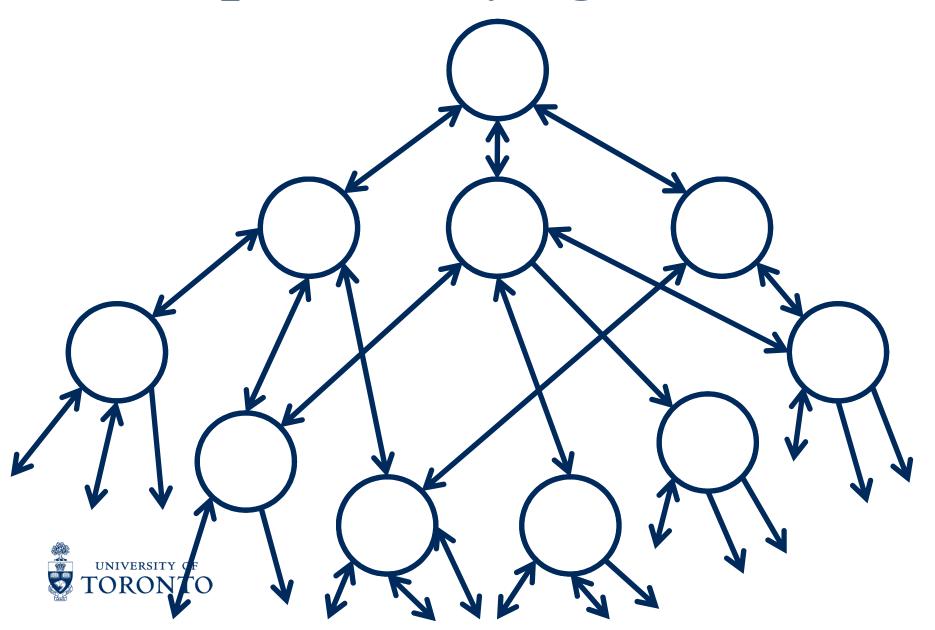




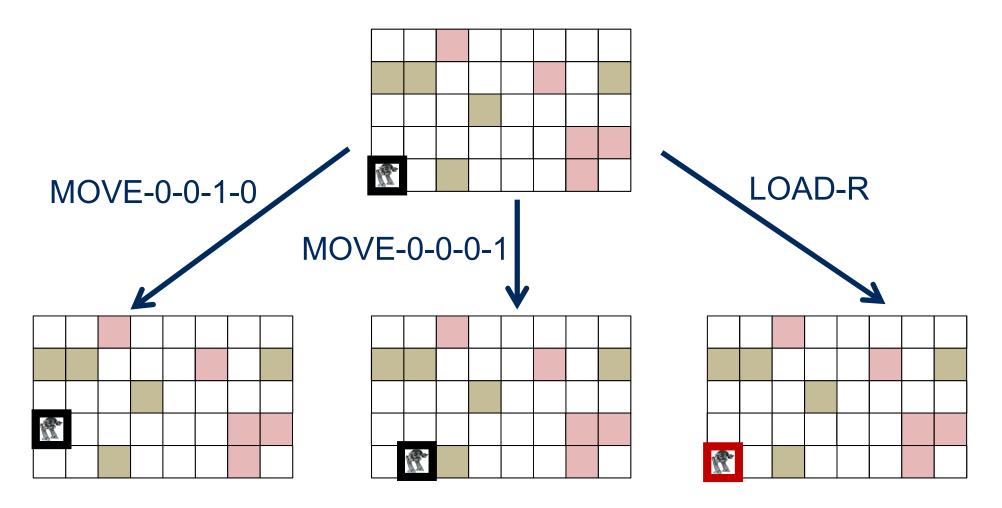
Graph Underlying Floortile



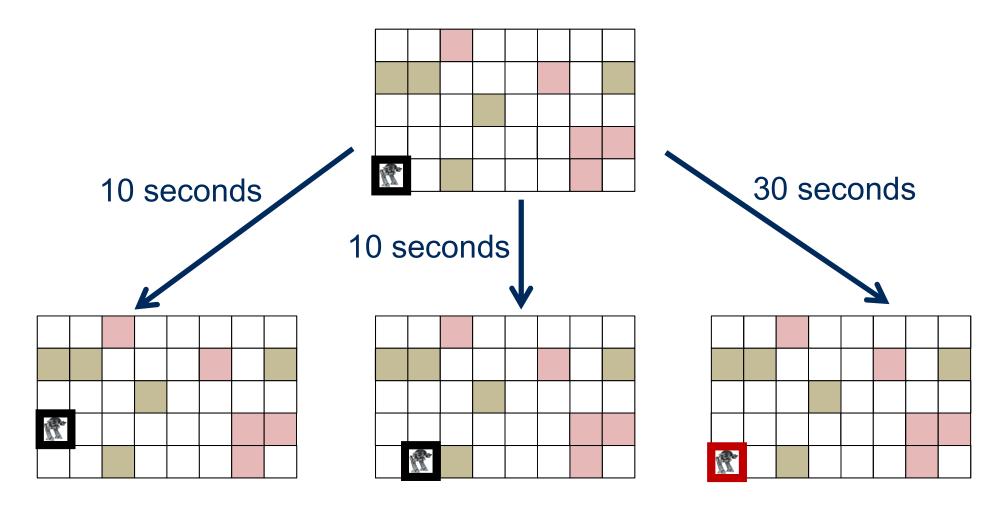
Graph Underlying Floortile



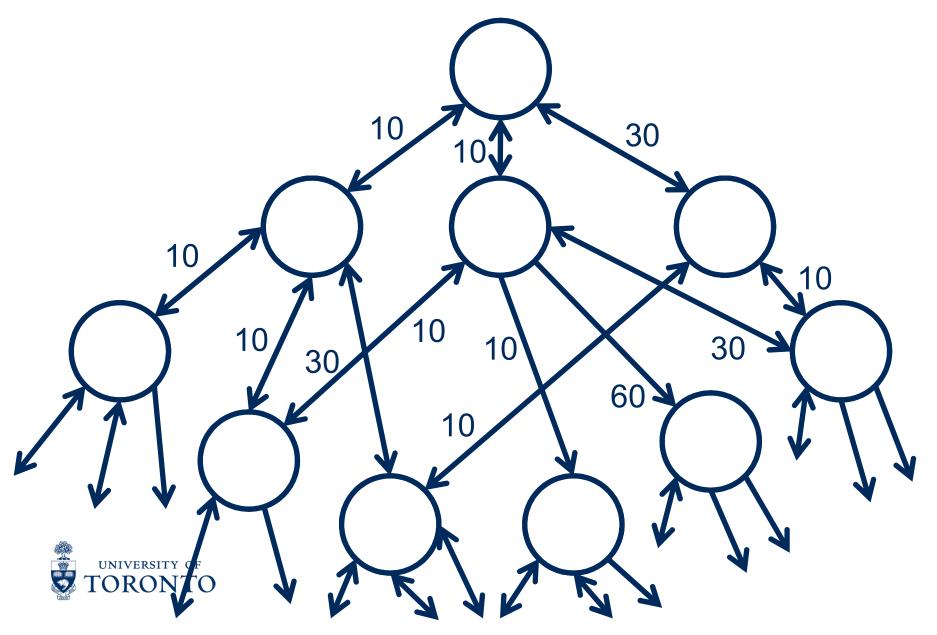
Action Costs



Action Costs



Edge Weights

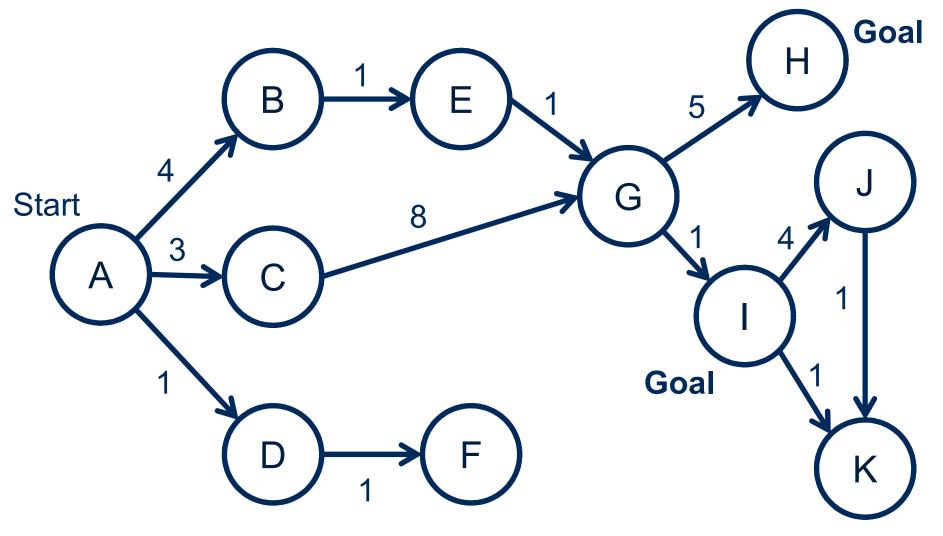


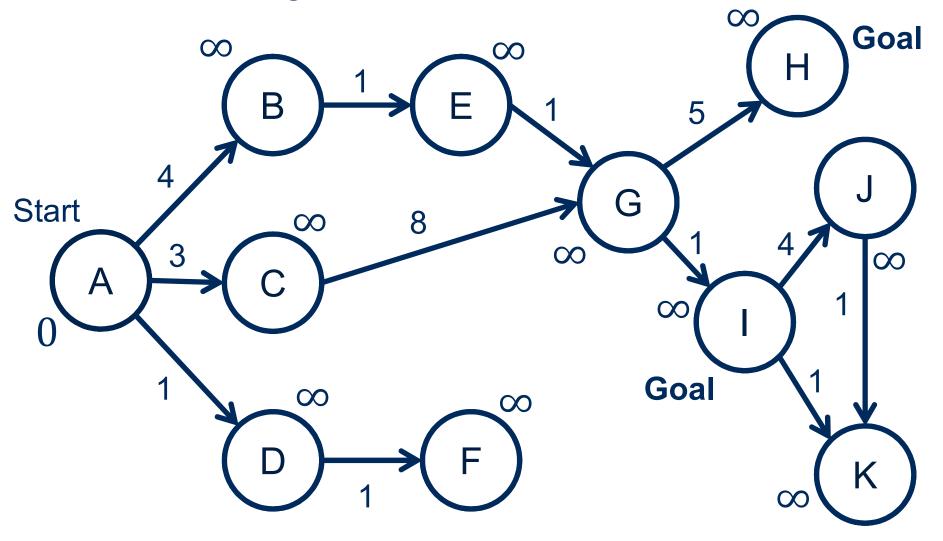
Planning as Graph-Search

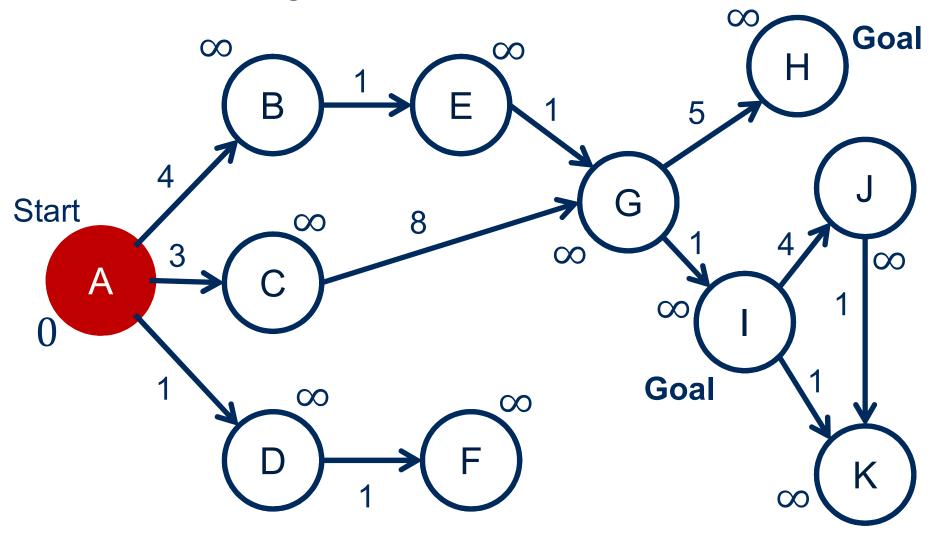
Can generate the underlying graph

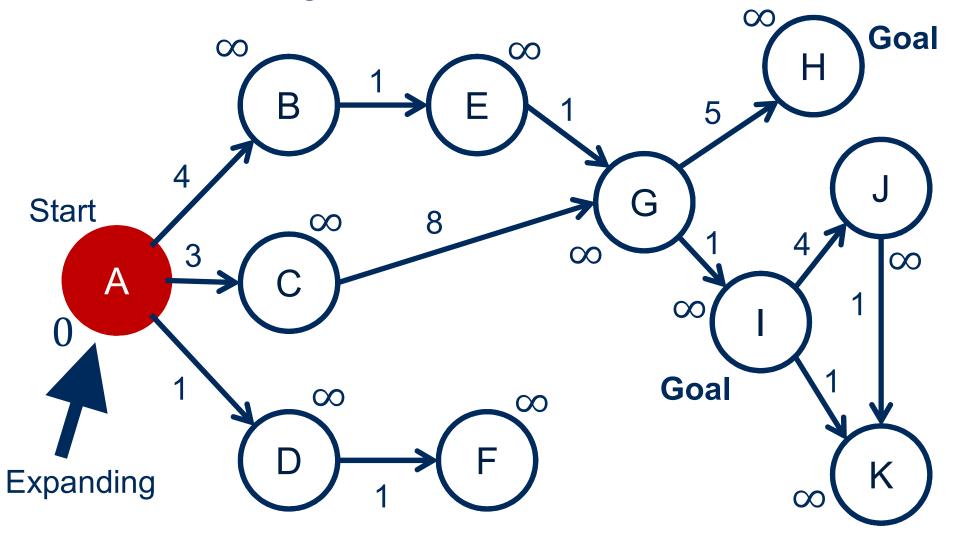
Use the goal test function to label goal nodes

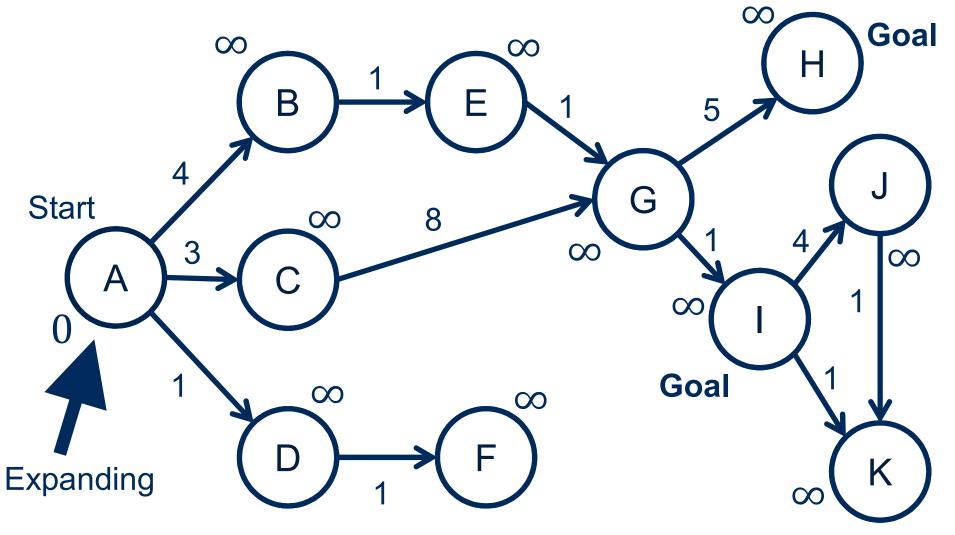
Use a standard graph-search algorithm

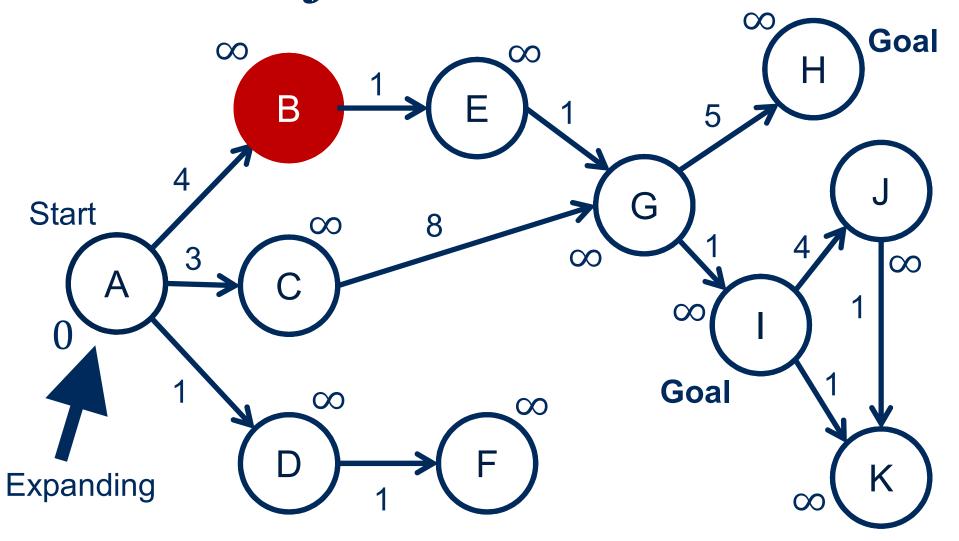


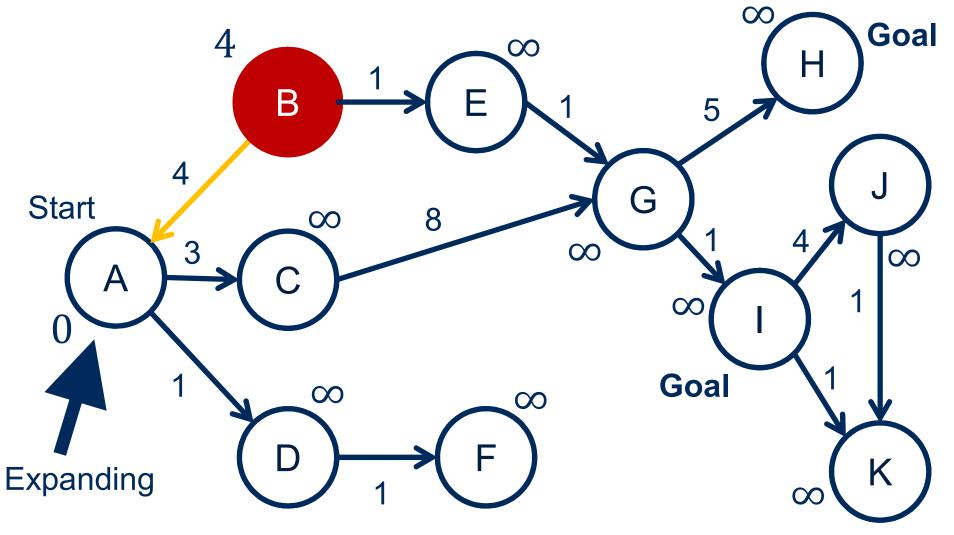


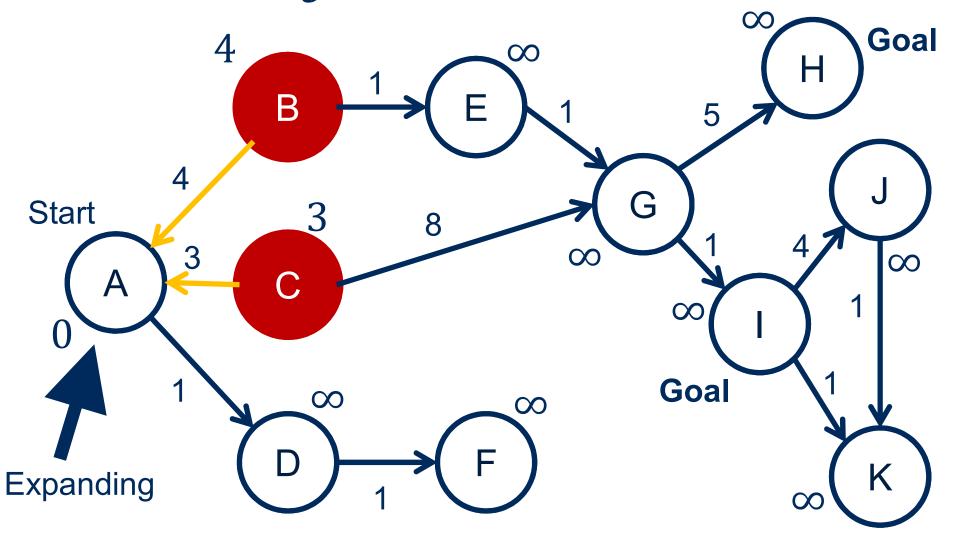


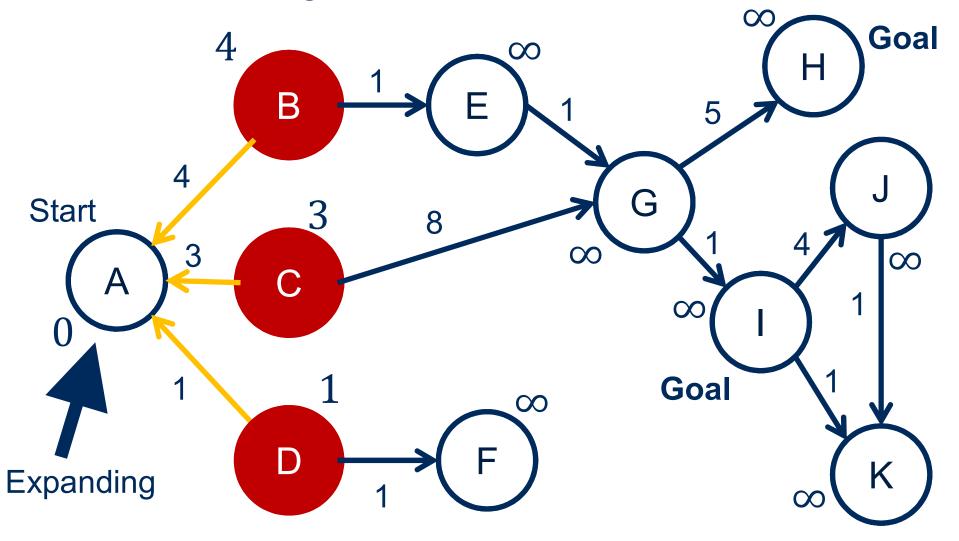


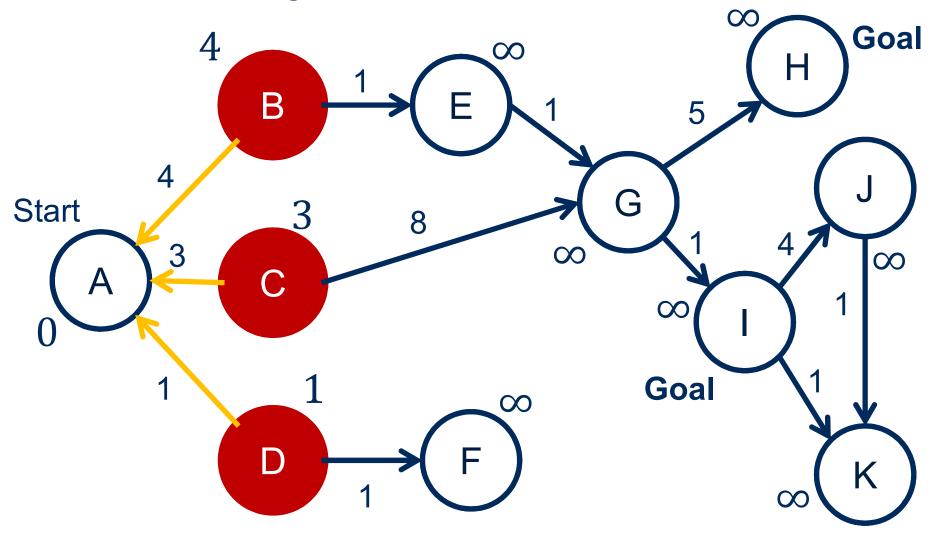


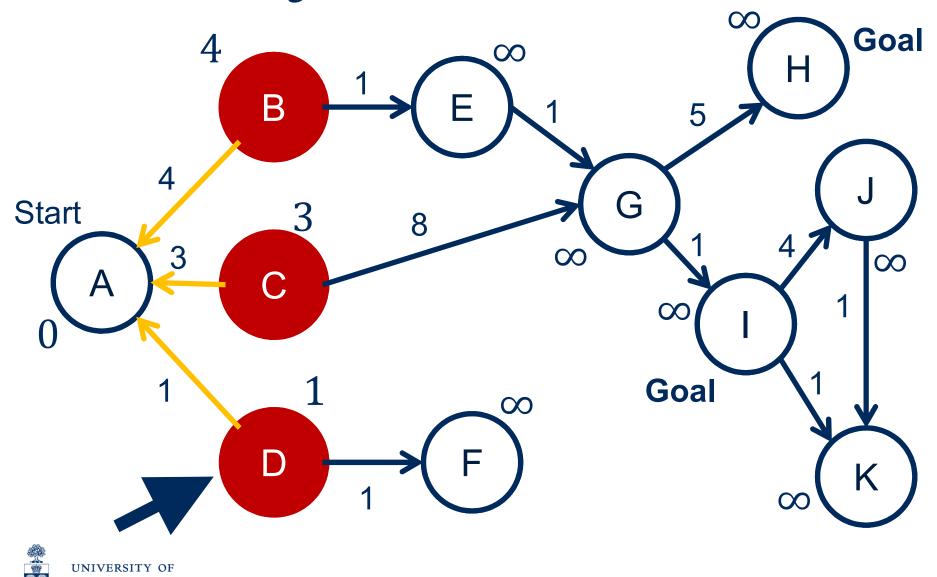


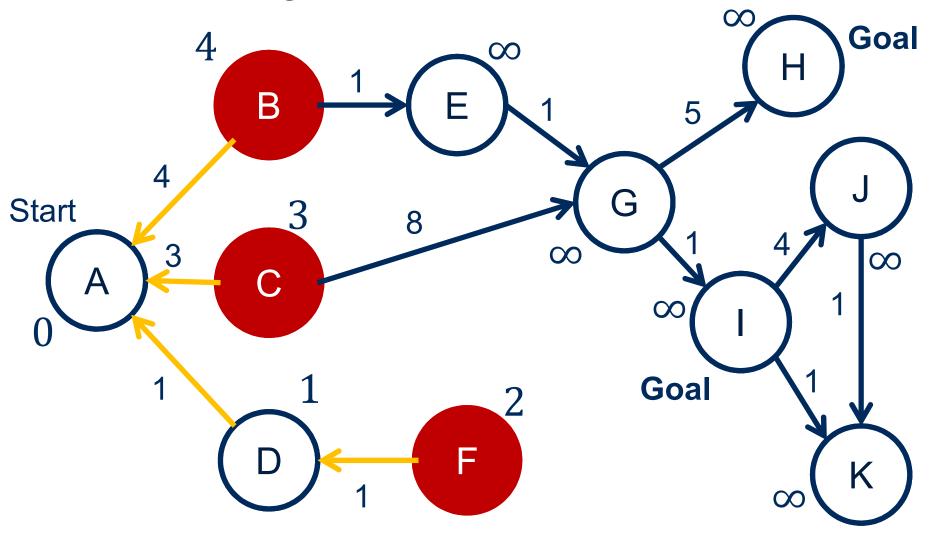


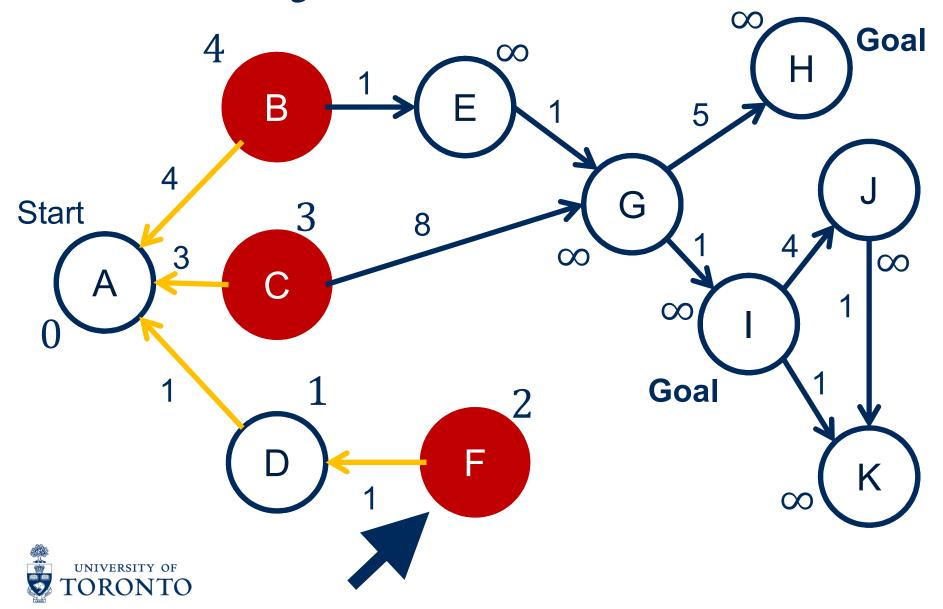


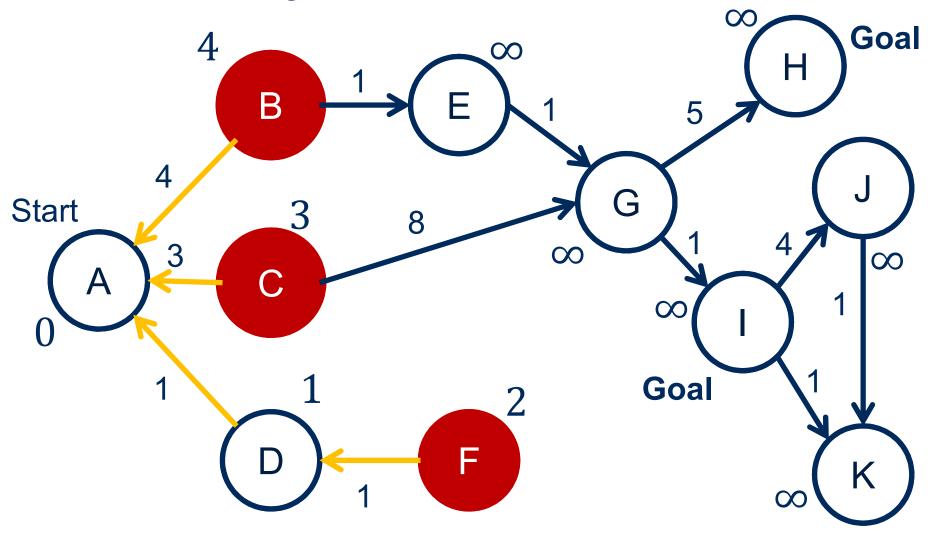


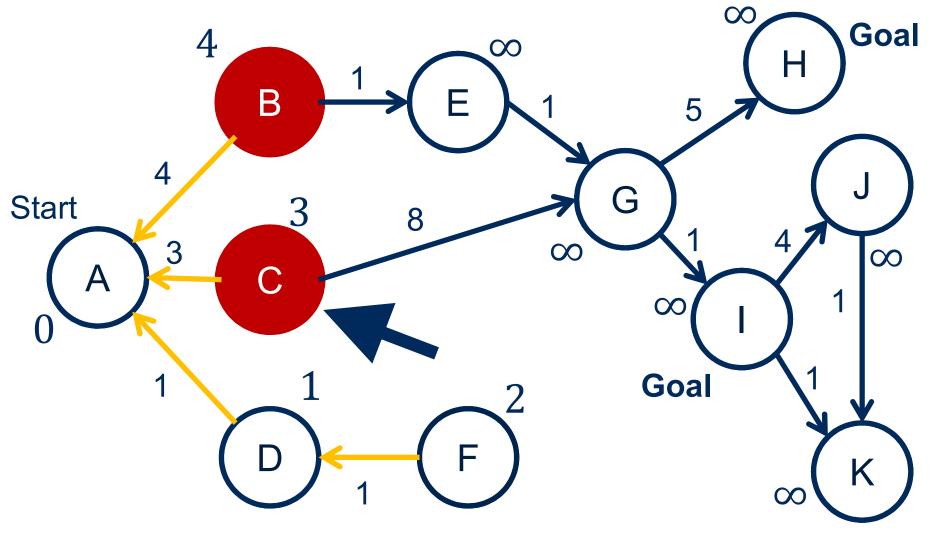


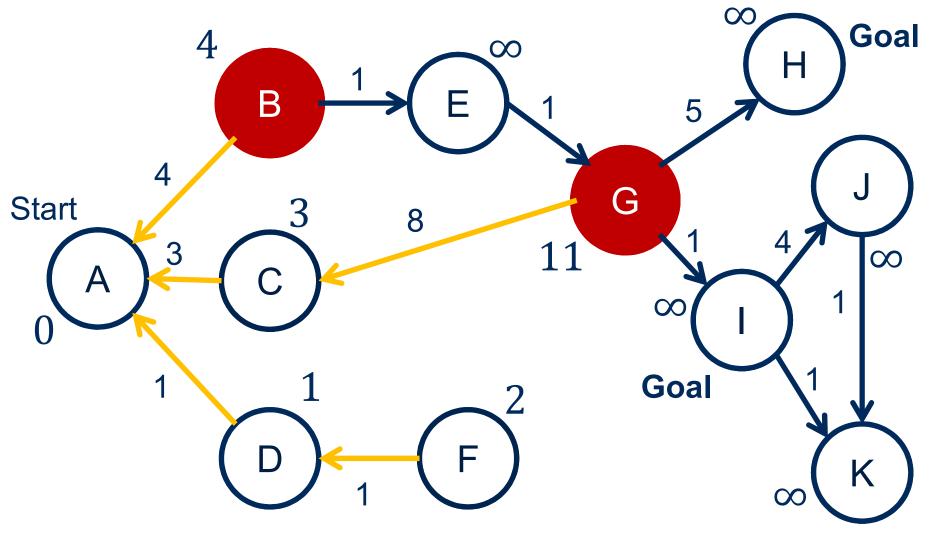


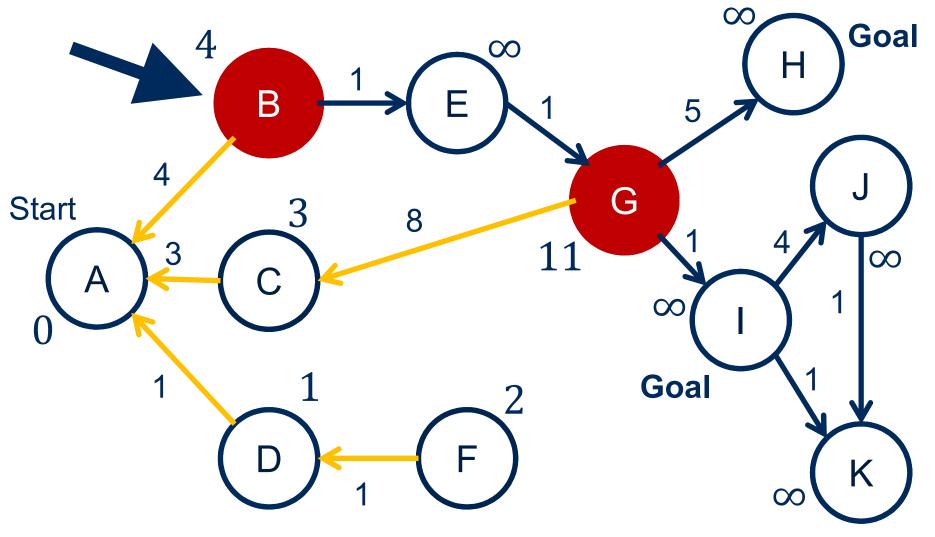


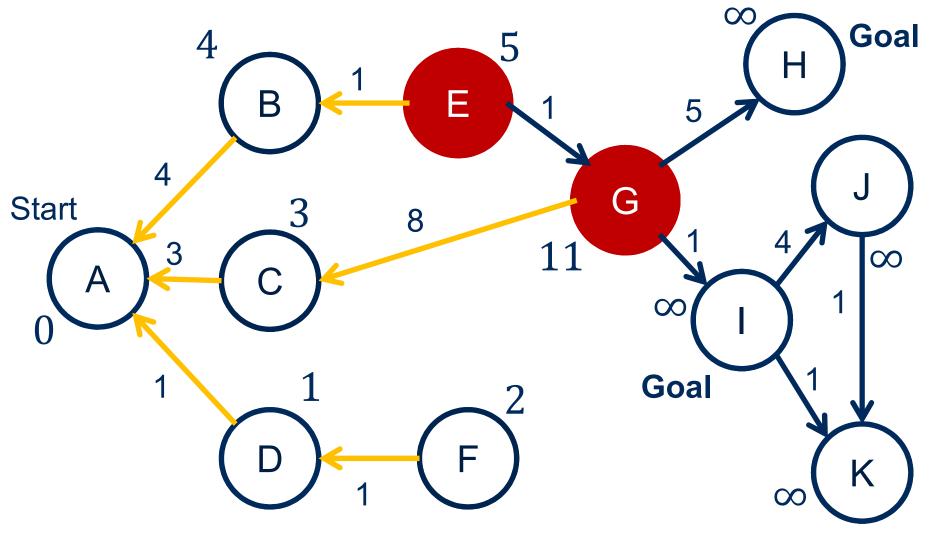


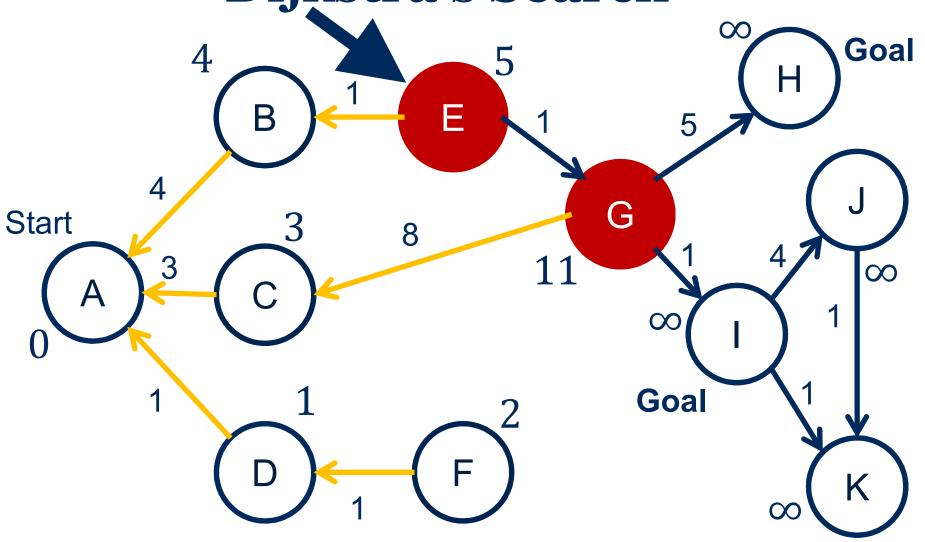


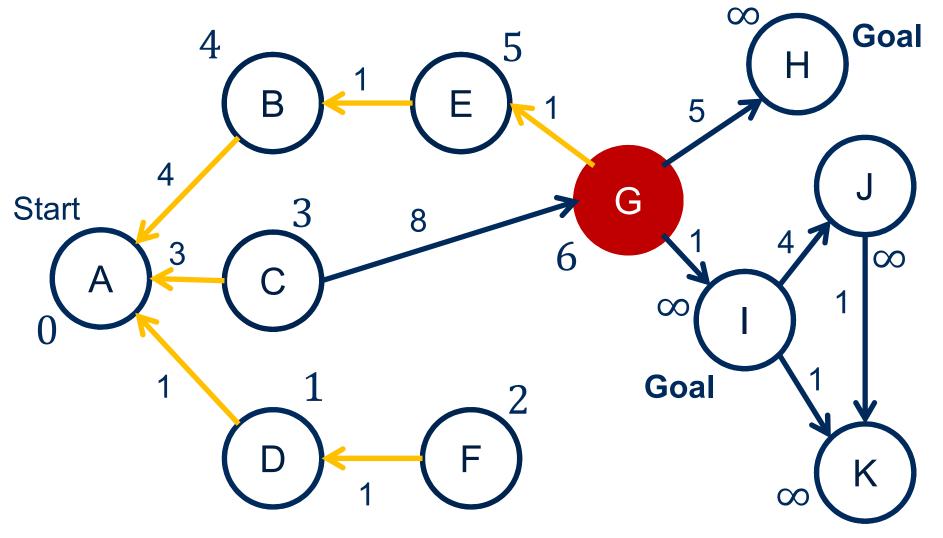


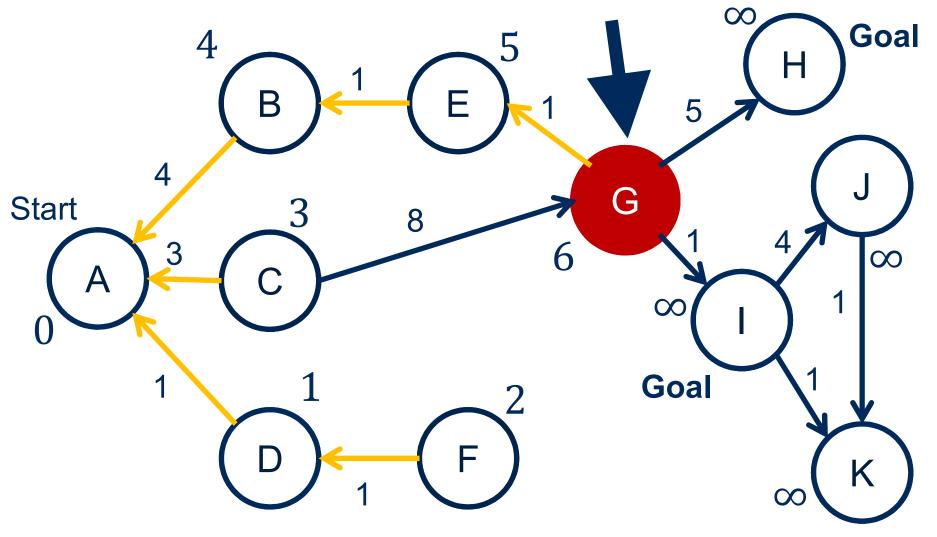


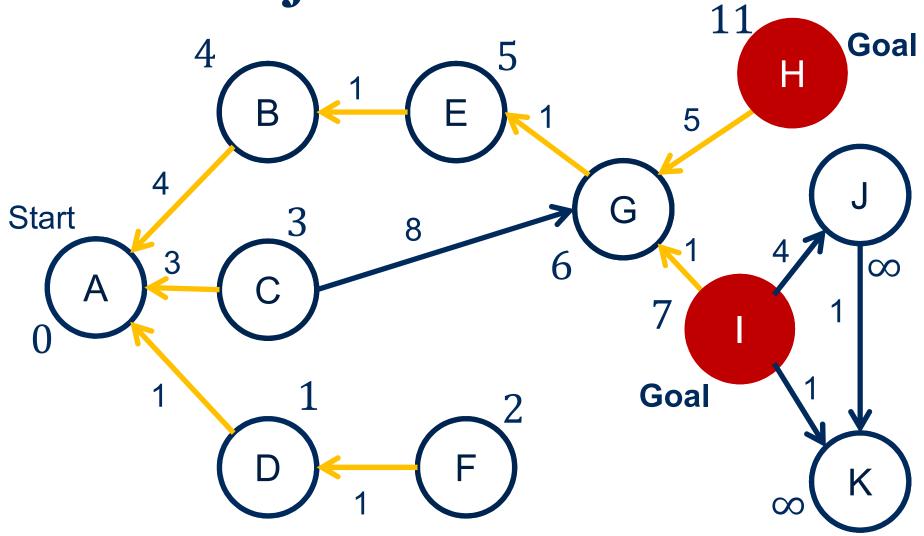


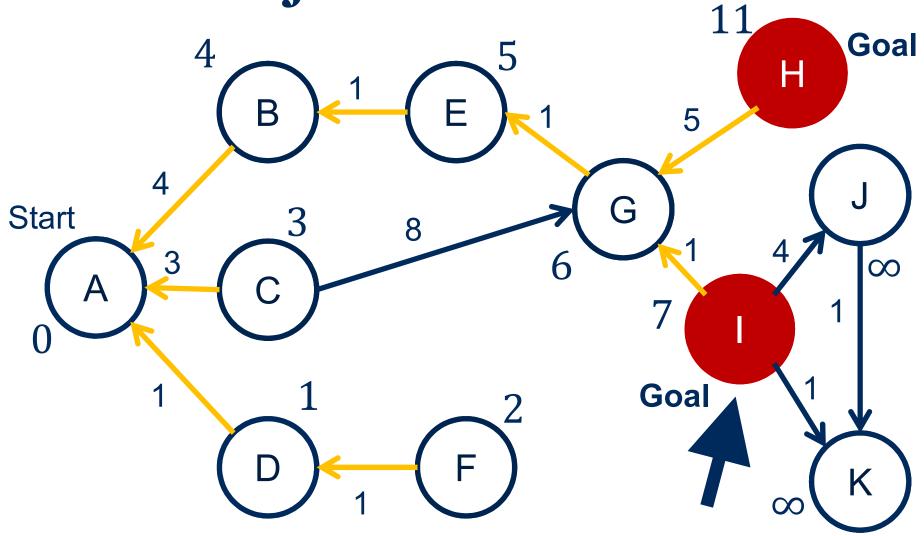


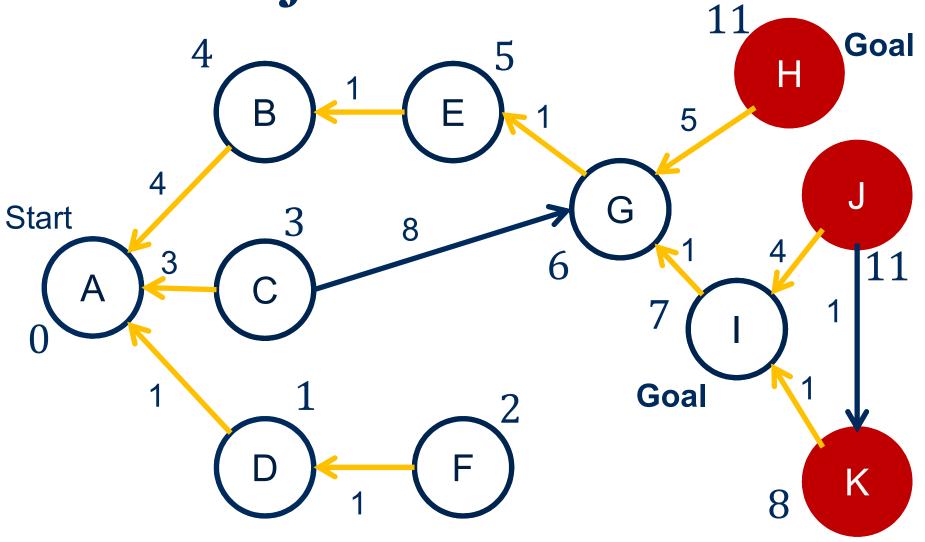


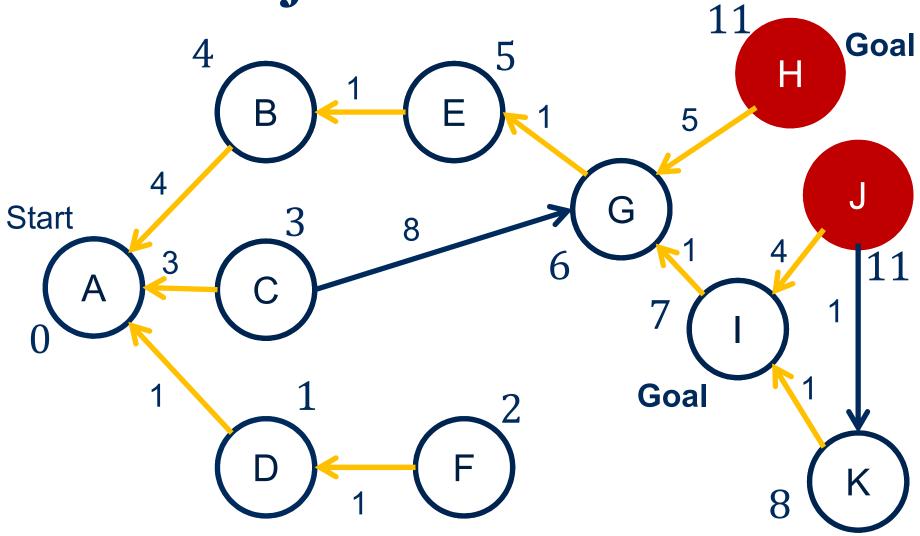


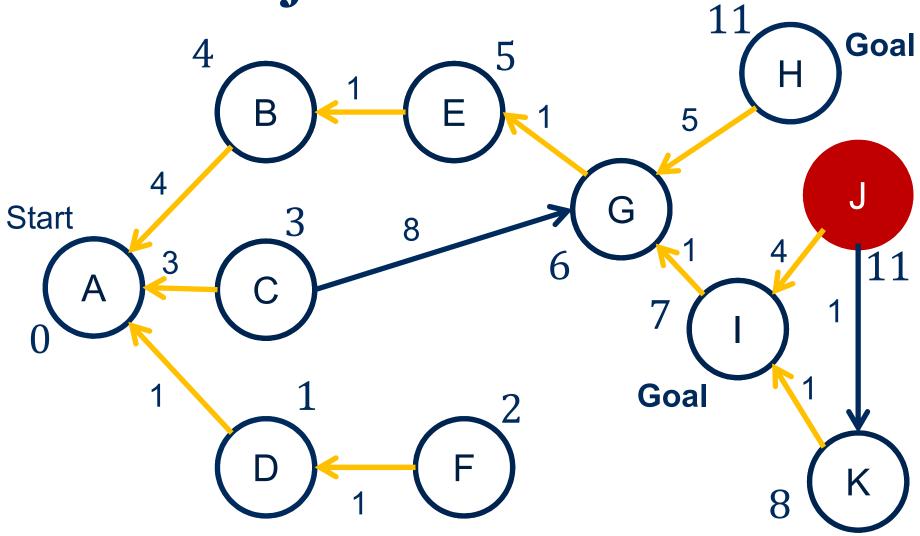


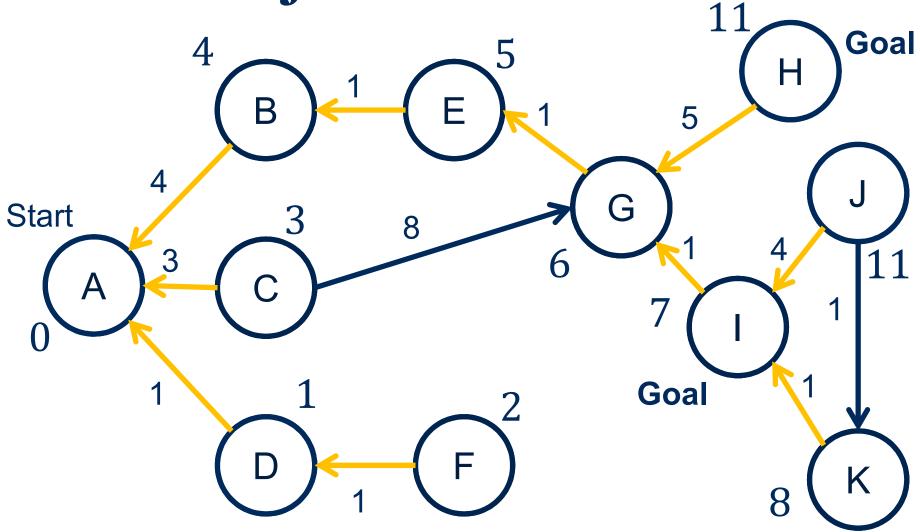












- Now have a shortest path to every vertex in graph
 - Can iterate through goals and return lowest-cost solution
- Dijkstra's search will look at O(|V|) vertices
 - So planning can be done in poly-time, right?

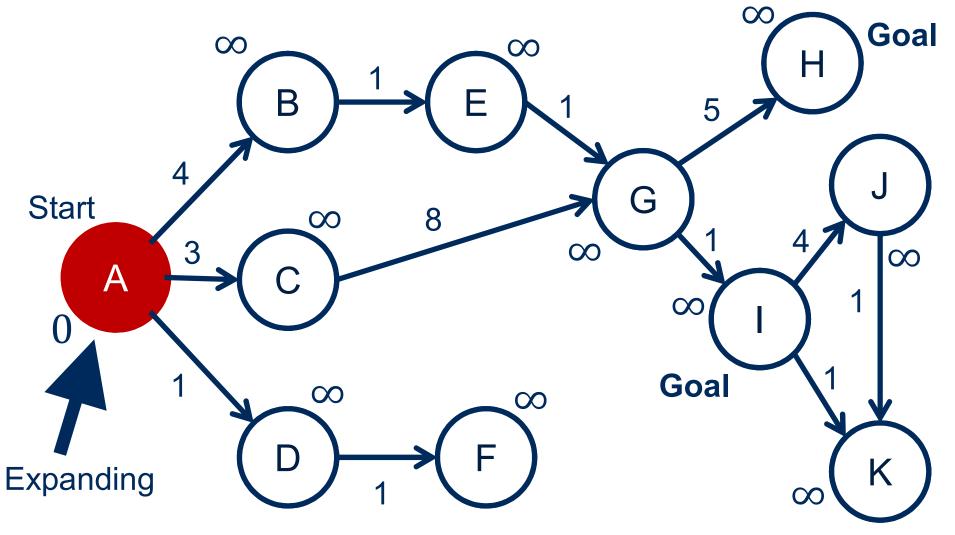
- Dijkstra's search is polynomial in |V|
 - But not polynomial in the given problem representation
- Consider floortile on an N x N grid with K locations that need to be painted
 - Robot can be in either LOADED-B or LOADED-R
 - Robot can be in any of N x N locations
 - Any combination of the K locations can be painted
 - $O(2 \cdot N \cdot N \cdot 2^K)$ states

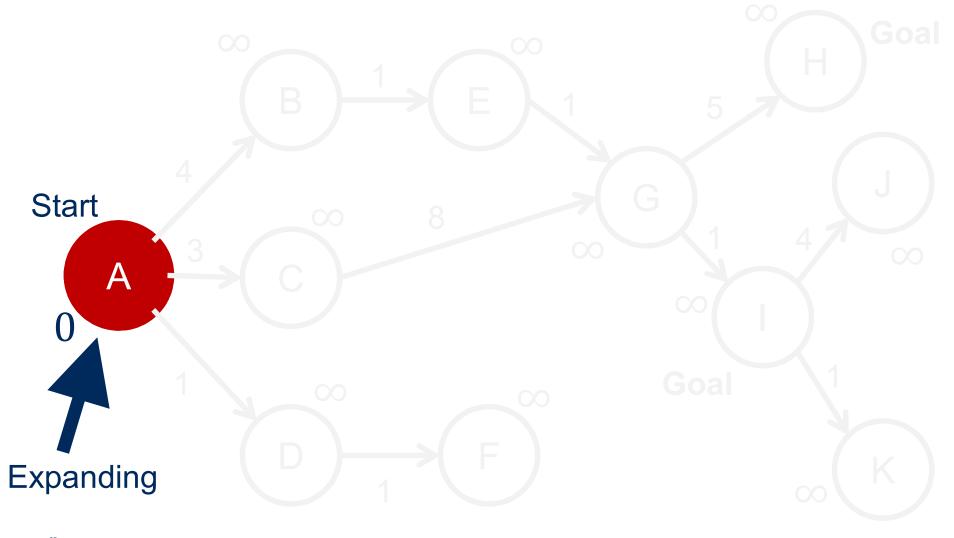
Two changes to Dijkstra's Algorithm

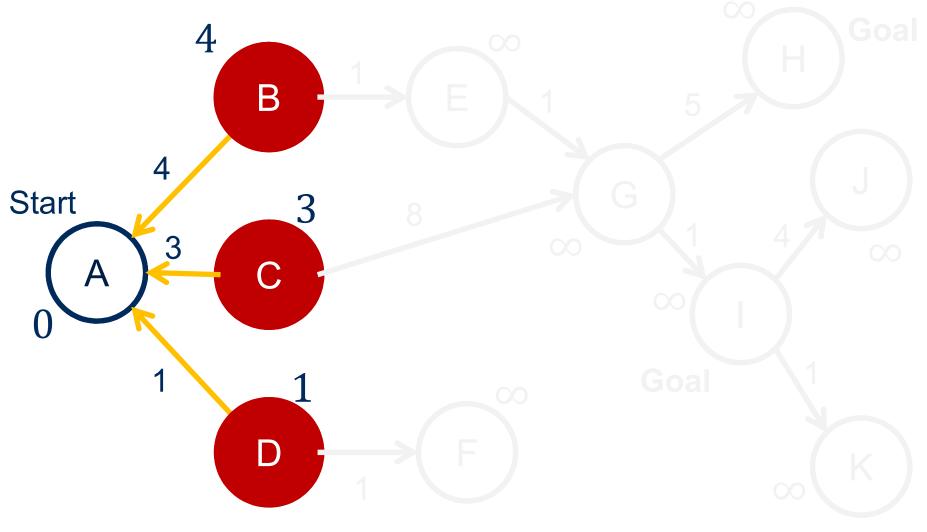
1. Stop after a goal node is first expanded.

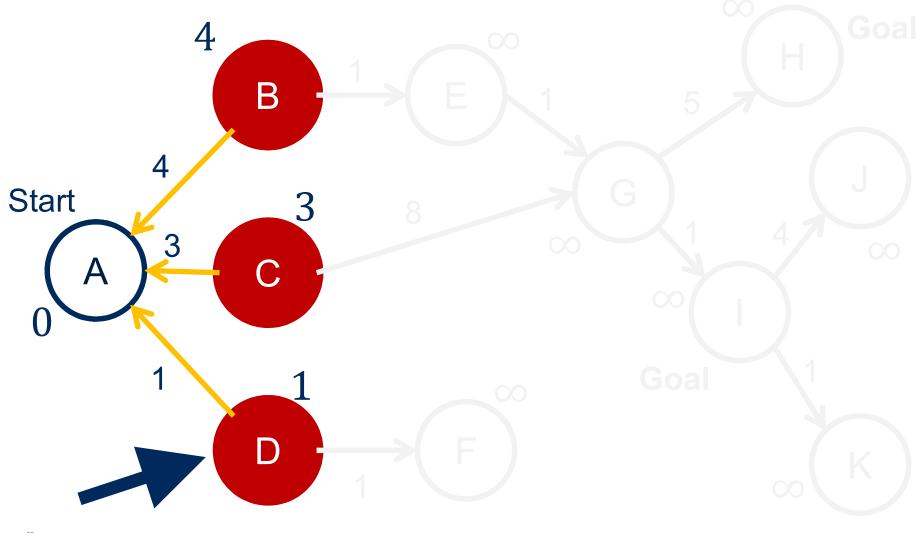


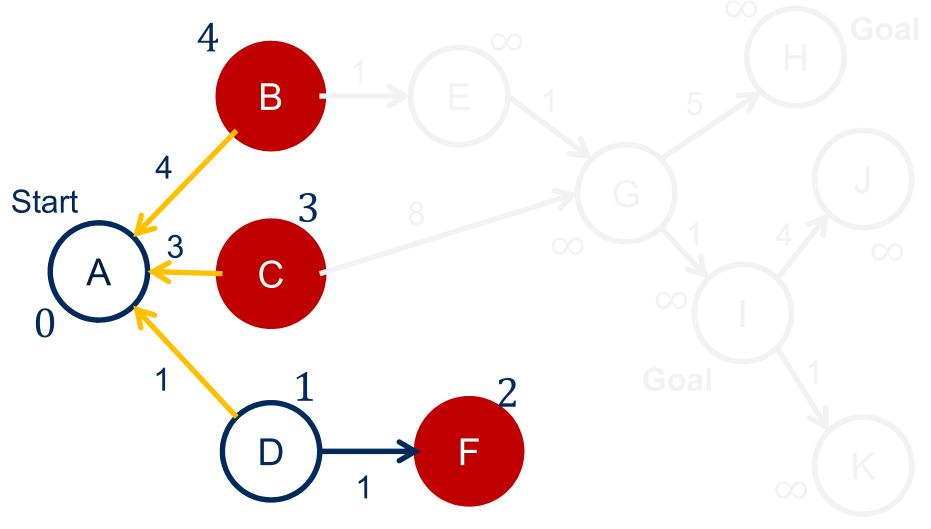
- Two changes to Dijkstra's Algorithm
- 1. Stop after a goal node is first expanded.
- 2. Use implicit action definition to generate the graph on-the-fly.

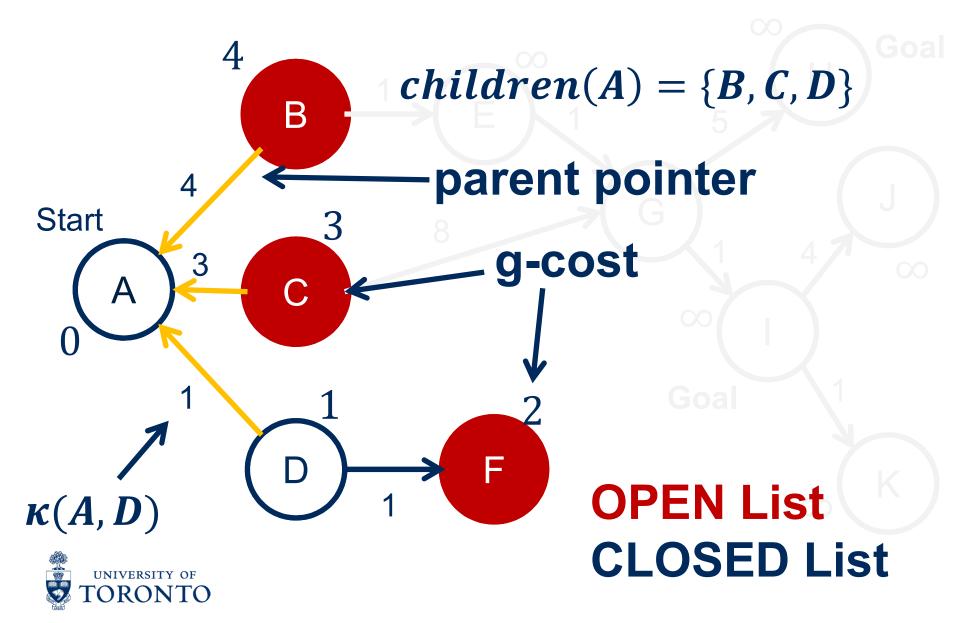












```
def UniformCostSearch(s_I):
 OPEN \leftarrow \{s_I\}, CLOSED \leftarrow \{\},\
g(s_I) = 0, parent(s_I) = \emptyset
while OPEN \neq \{\}:
         p \leftarrow \operatorname{argmin}_{\{s' \in OPEN\}} g(s')
         if p is a goal, return path to p
         for c \in children(p):
                  if c \notin OPEN \cup CLOSED:
                           g(c) = g(p) + \kappa(p, c)
                           parent(c) = p
                           OPEN \leftarrow OPEN \cup \{c\}
                  else if g(c) > g(p) + \kappa(p, c):
                           g(c) = g(p) + \kappa(p, c)
                           parent(c) = p
                           if c \in CLOSED:
                                    OPEN \leftarrow OPEN \cup \{c\}
                                    CLOSED \leftarrow CLOSED - \{c\}
         OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}
return No solution exists
```

```
def UniformCostSearch(s_I):
OPEN \leftarrow \{s_I\}, CLOSED \leftarrow \{\},\
                                        Initialize Search
g(s_I) = 0, parent(s_I) = \emptyset
while OPEN \neq \{\}:
         p \leftarrow \operatorname{argmin}_{\{s' \in OPEN\}} g(s')
         if p is a goal, return path to p
         for c \in children(p):
                  if c \notin OPEN \cup CLOSED:
                           g(c) = g(p) + \kappa(p, c)
                          parent(c) = p
                           OPEN \leftarrow OPEN \cup \{c\}
                  else if g(c) > g(p) + \kappa(p, c):
                           g(c) = g(p) + \kappa(p, c)
                          parent(c) = p
                          if c \in CLOSED:
                                   OPEN \leftarrow OPEN \cup \{c\}
                                   CLOSED \leftarrow CLOSED - \{c\}
         OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}
return No solution exists
```

```
def UniformCostSearch(s_I):
g(s_I) = 0, parent(s_I) = \emptyset Get node from OPEN
while OPEN \neq \{\}:
        p \leftarrow \operatorname{argmin}_{\{s' \in OPEN\}} g(s')
        if p is a goal, return path to p
        for c \in children(p):
                 if c \notin OPEN \cup CLOSED:
                         g(c) = g(p) + \kappa(p, c)
                         parent(c) = p
                         OPEN \leftarrow OPEN \cup \{c\}
                 else if g(c) > g(p) + \kappa(p, c):
                         g(c) = g(p) + \kappa(p, c)
                         parent(c) = p
                         if c \in CLOSED:
                                  OPEN \leftarrow OPEN \cup \{c\}
                                  CLOSED \leftarrow CLOSED - \{c\}
        OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}
return No solution exists
```

```
def UniformCostSearch(s_I):
g(s_I) = 0, parent(s_I) = \emptyset Generate and handle
while OPEN \neq \{\}:
                                          children
        p \leftarrow \operatorname{argmin}_{\{s' \in OPEN\}} g(s')
        if p is a goal, return path to p
        for c \in children(p):
                if c \notin OPEN \cup CLOSED:
                         g(c) = g(p) + \kappa(p, c)
                         parent(c) = p
                         OPEN \leftarrow OPEN \cup \{c\}
                 else if g(c) > g(p) + \kappa(p, c):
                         g(c) = g(p) + \kappa(p, c)
                         parent(c) = p
                         if c \in CLOSED:
                                 OPEN \leftarrow OPEN \cup \{c\}
                                 CLOSED \leftarrow CLOSED - \{c\}
        OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}
return No solution exists
```

```
def UniformCostSearch(s_I):
g(s_I) = 0, parent(s_I) = \emptyset Generate and handle
while OPEN \neq \{\}:
                                          children
        p \leftarrow \operatorname{argmin}_{\{s' \in OPEN\}} g(s')
        if p is a goal, return path to p
        for c \in children(p):
                if c \notin OPEN \cup CLOSED:
                         g(c) = g(p) + \kappa(p, c)
                         parent(c) = p
                         OPEN \leftarrow OPEN \cup \{c\}
                 else if g(c) > g(p) + \kappa(p, c):
                         g(c) = g(p) + \kappa(p, c)
                         parent(c) = p
                         if c \in CLOSED:
                                 OPEN \leftarrow OPEN \cup \{c\}
                                 CLOSED \leftarrow CLOSED - \{c\}
        OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}
return No solution exists
```

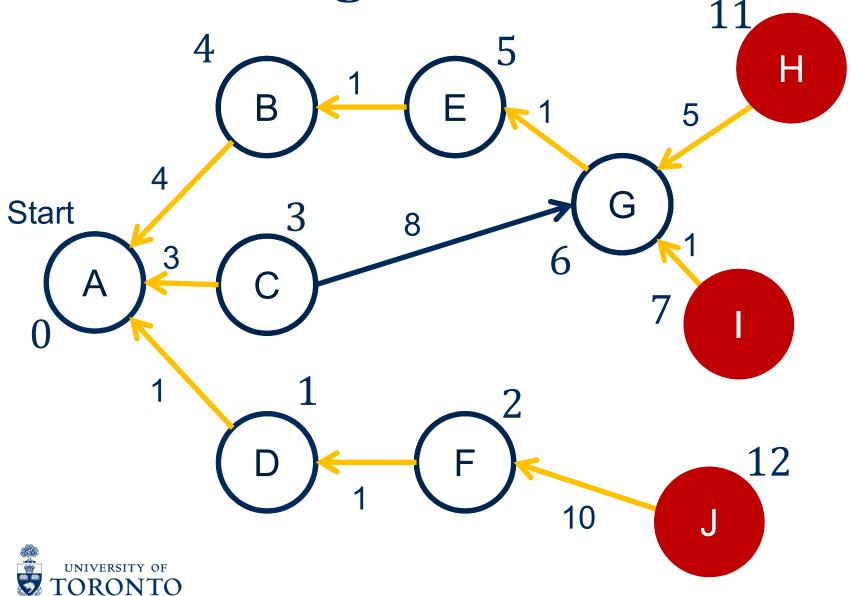
```
def UniformCostSearch(s_I):
OPEN \leftarrow \{s_I\}, CLOSED \leftarrow \{\},\
                                          Close expanded
g(s_I) = 0, parent(s_I) = \emptyset
while OPEN \neq \{\}:
                                                   node
         p \leftarrow \operatorname{argmin}_{\{s' \in OPEN\}} g(s')
         if p is a goal, return path to p
         for c \in children(p):
                 if c \notin OPEN \cup CLOSED:
                          g(c) = g(p) + \kappa(p, c)
                          parent(c) = p
                          OPEN \leftarrow OPEN \cup \{c\}
                  else if g(c) > g(p) + \kappa(p, c):
                          g(c) = g(p) + \kappa(p, c)
                          parent(c) = p
                          if c \in CLOSED:
                                   OPEN \leftarrow OPEN \cup \{c\}
                                   CLOSED \leftarrow CLOSED - \{c\}
         OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}
return No solution exists
```

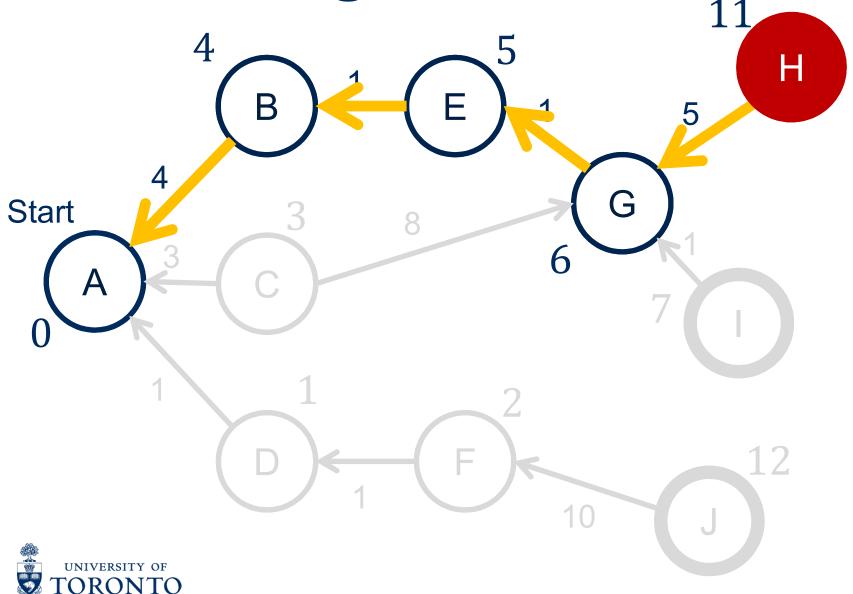
```
def UniformCostSearch(s_I):
OPEN \leftarrow \{s_I\}, CLOSED \leftarrow \{\},
                                        Repeat
g(s_I) = 0, parent(s_I) = \emptyset
while OPEN \neq \{\}:
         p \leftarrow \operatorname{argmin}_{\{s' \in OPEN\}} g(s')
         if p is a goal, return path to p
         for c \in children(p):
                  if c \notin OPEN \cup CLOSED:
                          g(c) = g(p) + \kappa(p, c)
                          parent(c) = p
                          OPEN \leftarrow OPEN \cup \{c\}
                  else if g(c) > g(p) + \kappa(p, c):
                           g(c) = g(p) + \kappa(p, c)
                          parent(c) = p
                          if c \in CLOSED:
                                   OPEN \leftarrow OPEN \cup \{c\}
                                   CLOSED \leftarrow CLOSED - \{c\}
         CLOSED \leftarrow CLOSED - \{p\}
return No solution exists
```

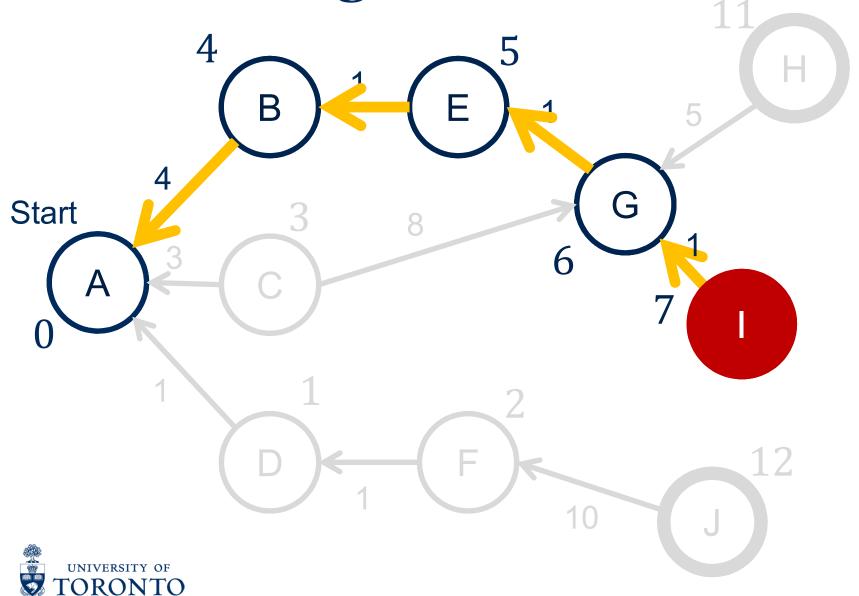
- UCS is completely exhaustive and brute-force
- Makes it prohibitively expensive

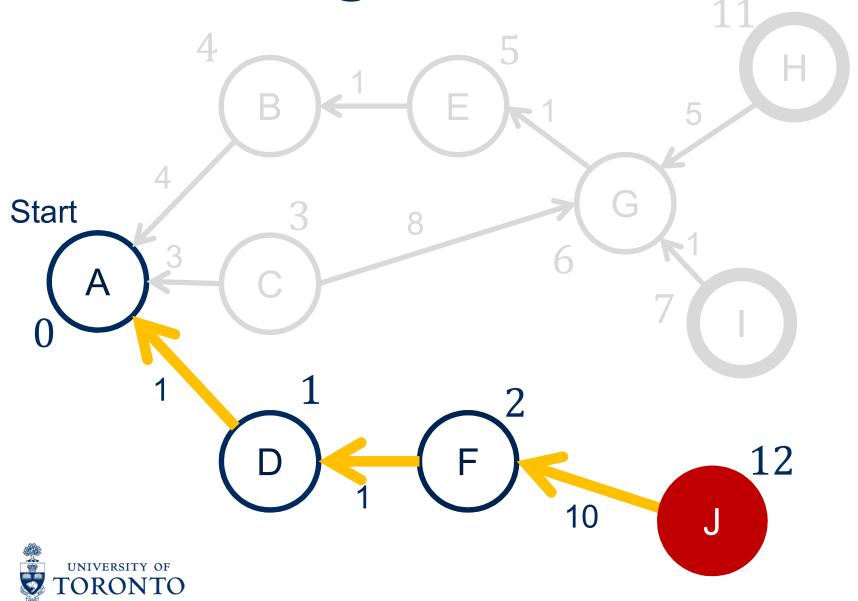
Depth	Nodes 1100	Time		Memory	
2		.11	seconds	1	megabyte
4	111,100	11	seconds	106	megabytes
6	10^{7}	19	minutes	10	gigabytes
8	10^{9}	31	hours	1	terabytes
10	10^{11}	129	days	101	terabytes
12	10^{13}	35	years	10	petabytes
14	10^{15}	3,523	years	1	exabyte

Figure 3.11 Time and memory requirements for breadth-first search. The numbers shown assume branching factor b = 10; 10,000 nodes/second; 1000 bytes/node.









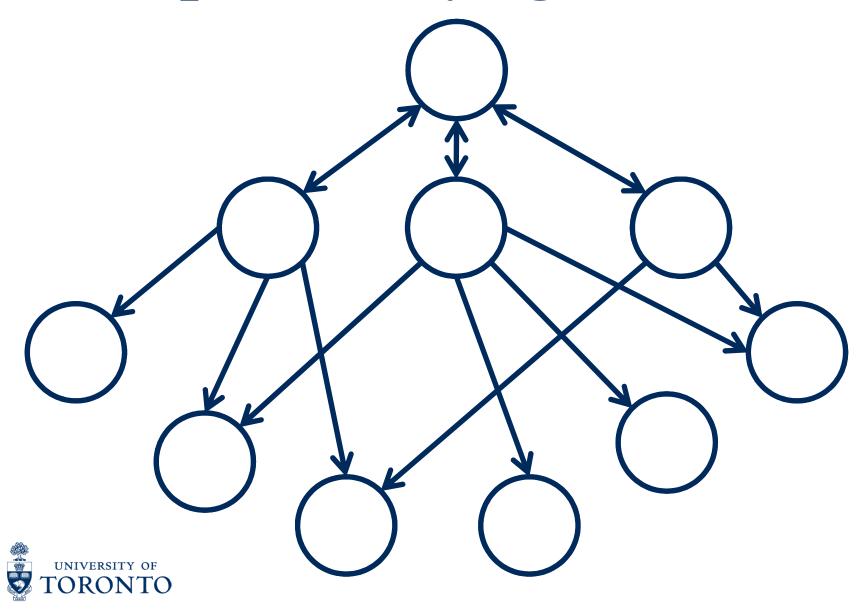
Uniform Cost Search

- Iteratively extending some candidate path
- Uses the g-cost as the basis of this selection
 - Only info that uniform cost search has about a state
 - Only "uses" the transition function
- But each vertex represents a state
 - There is more information that can be used

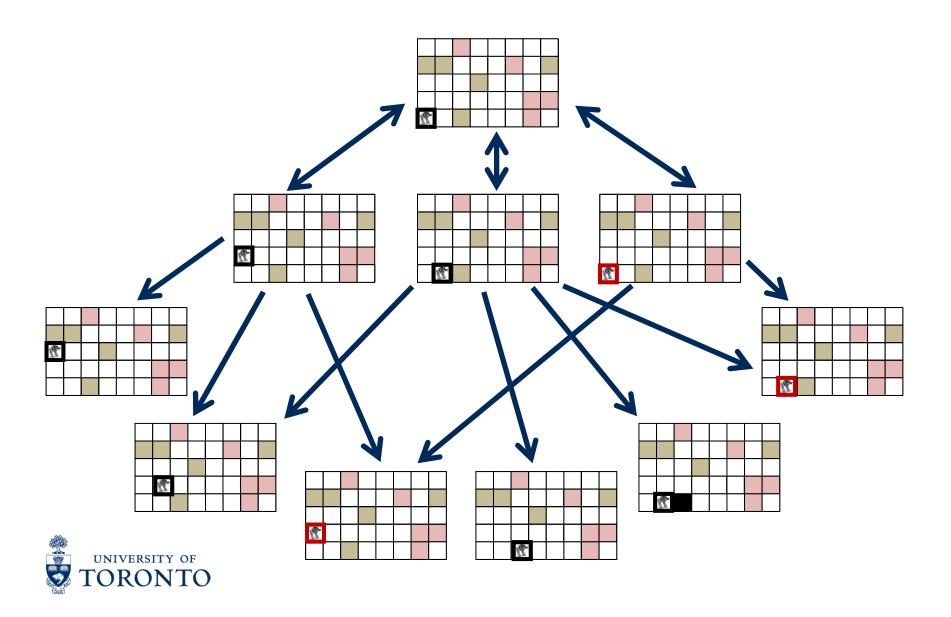
Uniform Cost Search

- Iteratively extending some candidate path
- Uses the g-cost as the basis of this selection
 - Only info that uniform cost search has about a state
 - Only "uses" the transition function
- But each vertex represents a state
 - There is more information that can be used

Graph Underlying Floortile



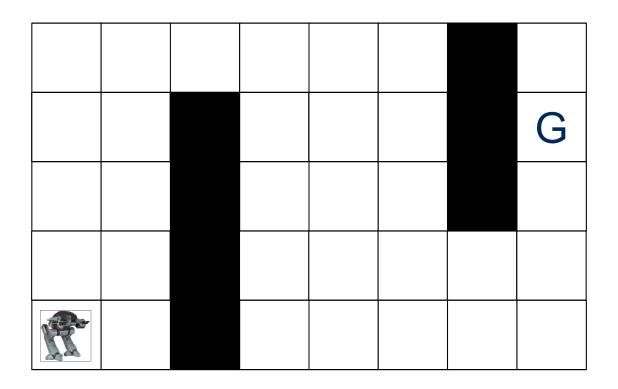
States Corresponding to Vertices



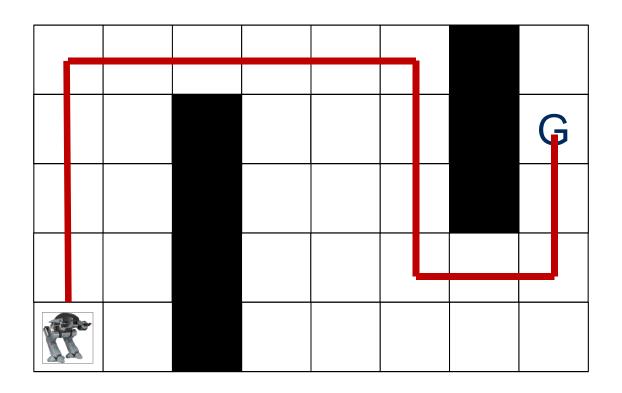
Heuristic Guidance

- A **heuristic function** *h* is a function from states* to the non-negative real values
 - Estimate the cost to reach the goal from the state
 - Other algorithms use such functions to change how they determine the order for extending candidate paths
- Often based on domain knowledge or domain simplification
- * Or sometimes candidate paths to real values

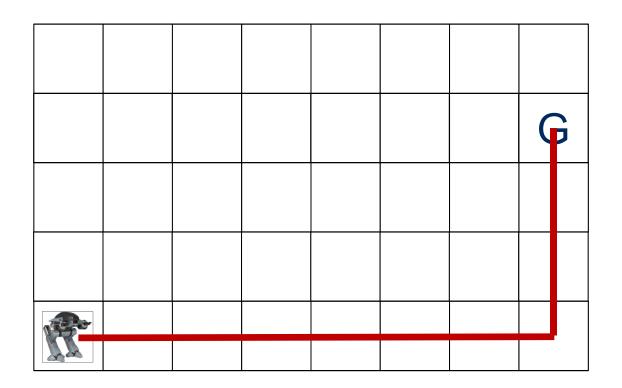
Pathfinding



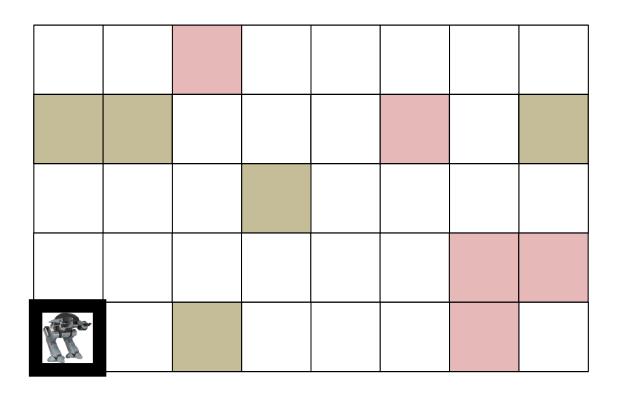
Pathfinding



Pathfinding



Floortile from IPC 2011



• What are possible heuristics or simplications here?

Automatic Heuristic Generation

- Can use domain knowledge
- Many automatic heuristic generation techniques
 - Delete relaxation
 - Pattern databases
 - Landmark-based heuristics
 - Merge-and-Shrink
 - Counterexample guided abstraction refinement heuristics

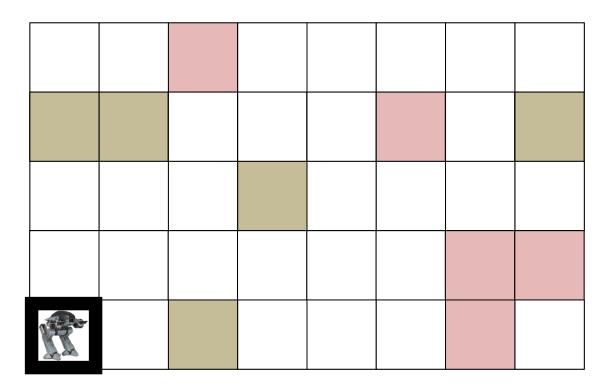
– ...

Automatic Heuristic Generation

- Can use domain knowledge
- Many automatic heuristic generation techniques
 - Delete relaxation
 - Pattern databases
 - Landmark-based heuristics
 - Merge-and-Shrink
 - Counterexample guided abstraction refinement heuristics

— ...

Can only achieve new facts, never delete them

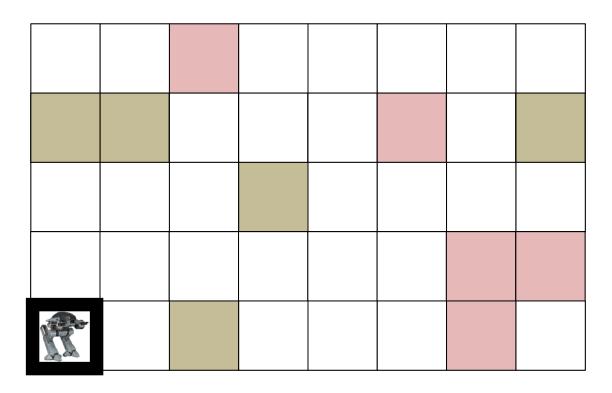


Move Action: MOVE-0-0-1

Pre: AT-0-0, WHITE-0-1

Post: AT-0-1, not(AT-0-0)

Can only achieve new facts, never delete them

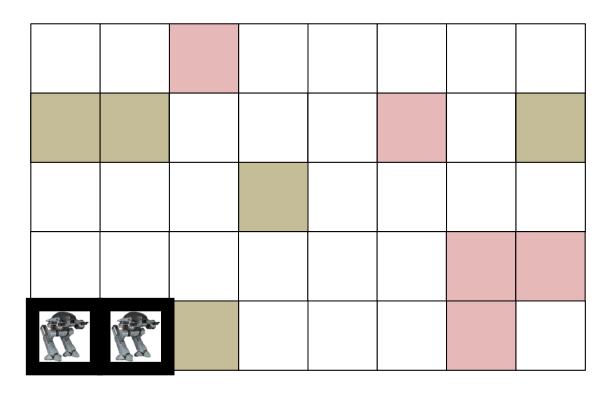


Move Action: MOVE-0-0-1

Pre: AT-0-0, WHITE-0-1

Post: AT-0-1, not(AT-0-0)

Can only achieve new facts, never delete them

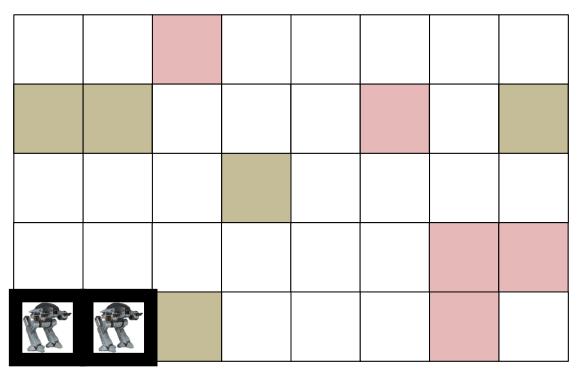


Move Action: MOVE-0-0-1

Pre: AT-0-0, WHITE-0-1

Post: AT-0-1, not(AT-0-0)

Can only achieve new facts, never delete them



Paint Action:

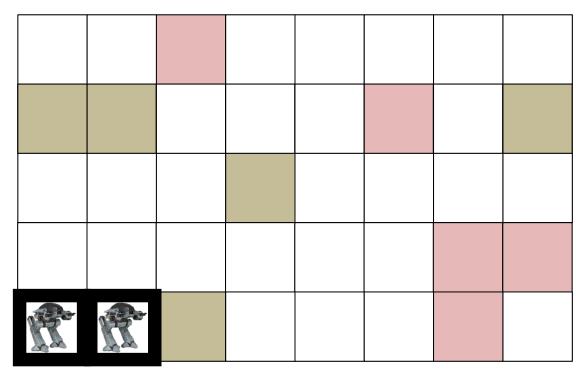
PAINT-B-0-1-0-2

Pre: AT-0-1, LOADED-B,

WHITE-0-2, NEED-B-0-2

Post: BLACK-0-2, not(WHITE-0-2)

Can only achieve new facts, never delete them



Paint Action:

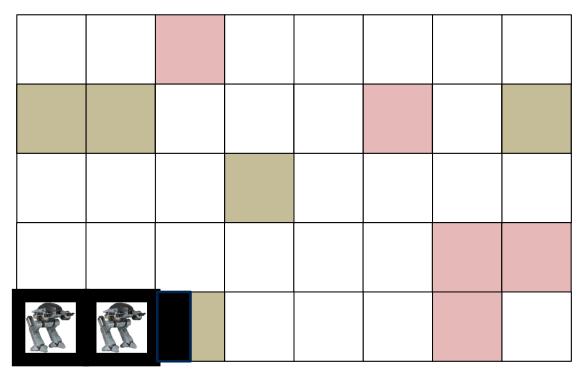
PAINT-B-0-1-0-2

Pre: AT-0-1, LOADED-B,

WHITE-0-2, NEED-B-0-2

Post: BLACK-0-2, not(WHITE-0-2)

Can only achieve new facts, never delete them



Paint Action:

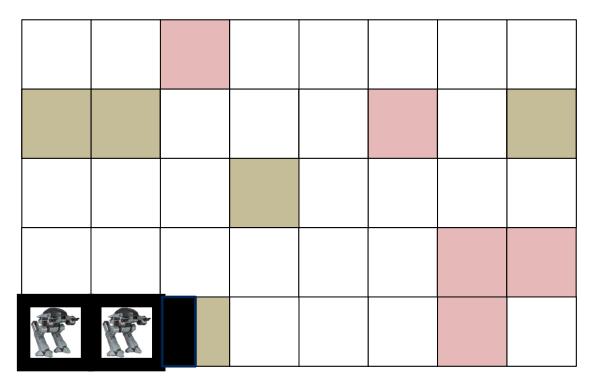
PAINT-B-0-1-0-2

Pre: AT-0-1, LOADED-B,

WHITE-0-2, NEED-B-0-2

Post: BLACK-0-2, not(WHITE-0-2)

Can only achieve new facts, never delete them



Load Action: LOAD-RED

Pre: LOADED-B

Post: LOADED-R, not(LOADED-B)

Can only achieve new facts, never delete them

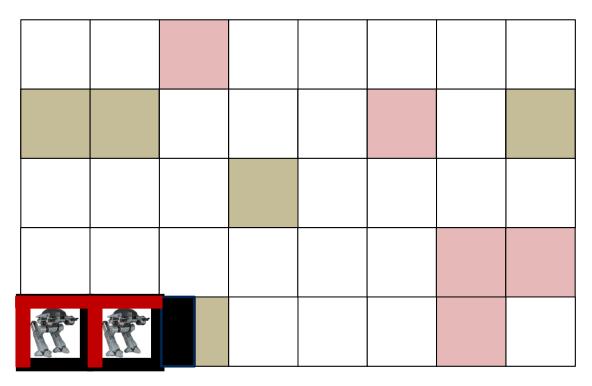


Load Action: LOAD-RED

Pre: LOADED-B

Post: LOADED-R, not(LOADED-B)

Can only achieve new facts, never delete them



Load Action: LOAD-RED

Pre: LOADED-B

Post: LOADED-R, not(LOADED-B)

- Still NP-complete to optimally solve delete relaxed problems
 - Better than PSPACE-hard, but still ...

 Do have polynomial ways to solve them suboptimally or come up with a lower bound

Summary

- Can solve planning using graph search
 - Generate graph and use Dijkstra's search
- Can incrementally generate the graph and stop early
 - Uniform cost search is this adjustment
- Uniform cost search is only using transition function
 - Ignoring state information
- Heuristic functions use state information to generate an estimate of the cost to a goal

