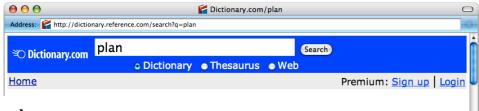
CSC2542 Introduction to Planning

Sheila McIlraith and Rick Valenzano Department of Computer Science University of Toronto Fall 2016

Acknowledgements

Some of the slides used in this course are modifications of Dana Nau's lecture slides for the textbook *Automated Planning*, licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Other slides are modifications of slides developed by Malte Helmert, Bernhard Nebel, and Jussi Rintanen.

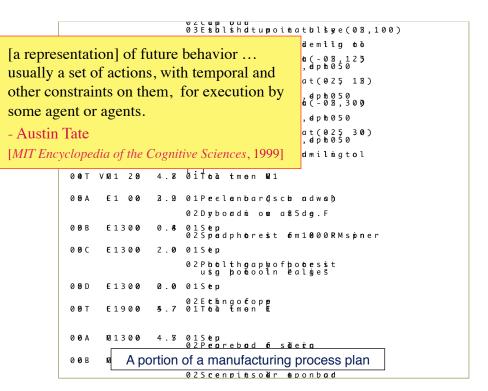

I have also used some material prepared by P@trick Haslum.

I would like to gratefully acknowledge the contributions of these researchers, and thank them for generously permitting me to use aspects of their presentation material.

Administrative Announcements

- Room change (and it might change again)
- Poll on new tutorial time
- Suggested readings for next week:
 - Hoffmann paper (more on this from Rick)
- Slides will be posted by the weekend
- Assignment description will be provided next week
- Send us email regarding papers or topics you'd like to cover in class (csc2542profs@cs.toronto.edu)

a Dictionary.com/plan plan Search **™** Dictionary.com Dictionary
 Thesaurus
 Web Premium: Sign up | Login Home plan n. 4. A drawing or diagram made to scale showing the structure or arrangement 1. A scheme, program, or method of something. worked out beforehand for the accomplishment of an objective: a 5. In perspective rendering, one of plan of attack. several imaginary planes perpendicular to the line of vision 2. A proposed or tentative project or between the viewer and the object course of action: had no plans for the being depicted. evening. 6. A program or policy stipulating a 3. A systematic arrangement of elements service or benefit: a pension plan. or important parts; a configuration or outline: a seating plan; the plan of a Synonyms: blueprint, design, project, story. scheme, strategy



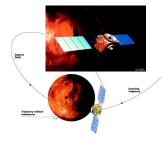
plan n.

- 1. A scheme, program, or method worked out beforehand for the accomplishment of an objective: *a plan of attack*.
- 2. A proposed or tentative project or course of action: *had no plans for the evening*.
- 3. A systematic arrangement of elements or important parts; a configuration or outline: *a seating plan; the plan of a story*.

- 4. A drawing or diagram made to scale showing the structure or arrangement of something.
- 5. In perspective rendering, one of several imaginary planes perpendicular to the line of vision between the viewer and the object being depicted.
- 6. A program or policy stipulating a service or benefit: *a pension plan*.

Synonyms: blueprint, design, project, scheme, strategy

Modes of Planning


- Mixed Initiative Planning
- Automated Plan Generation

Example Planning Applications

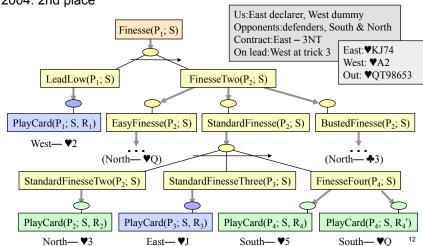
Autonomous Agents for Space Exploration

- Autonomous planning, scheduling, control
 - NASA: JPL and Ames
- Remote Agent Experiment (RAX)
 - Deep Space 1
- Mars Exploration Rover (MER)

Other Autonomous Systems

Manufacturing Automation

- Sheet-metal bending machines Amada Corporation
 - Software to plan the sequence of bends [Gupta and Bourne, *J. Manufacturing Sci. and Engr.*, 1999]



Games

E.g., Bridge Baron - Great Game Products

• 1997 world champion of computer bridge [Smith, Nau, and Throop, *Al Magazine*, 1998]

• 2004: 2nd place

Other Applications

- Scheduling with Action Choices & Resource Requirements
 - Problems in supply chain management
 - HSTS (Hubble Space Telescope scheduler)
 - Workflow management
- Air Traffic Control
 - Route aircraft between runways and terminals. Crafts must be kept safely separated. Safe distance depends on craft and mode of transport. Minimize taxi and wait time.
- Character Animation
 - Generate step-by-step character behaviour from highlevel spec
- Plan-based Interfaces
 - Dialogue management (plan a dialogue to convey something)
 - Plan recognition

Other Applications (cont.)

- Narrative generation
- Narrative understanding
- Software/Program synthesis
- Automated diagnosis
- Intelligent tutoring systems
- ...

Other Applications (cont.)

- Web Service Composition
 - Compose web services, and monitor their execution
 - Many of the web standards have a lot of connections to action representation languages
 - BPEL; BPEL-4WS allow workflow specifications
 - DAML-S allows process specifications
- Business Process Composition / Workflow Management
 - Including Grid Services/Scientific Workflow Management
- Genome Rearrangement
 - The relationship between different organisms can be measured by the number of "evolution events" (rearrangements) that separate their genomes
 - Find shortest (or most likely) sequence of rearrangements between a pair of genomes

Outline

- → Conceptual model for planning
- Classes of planning problems
- Classes of planners and example instances
- Beyond planning
- Planning research the big picture
- Some of what I hope you'll get from the course

Conceptual Model

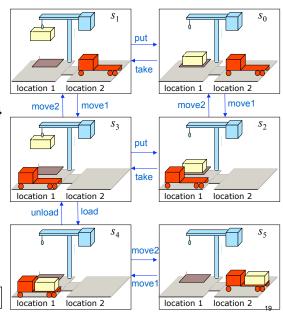
1. Environment

State Transition System

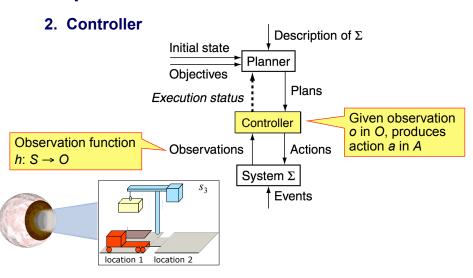
$$\Sigma = (S, A, E, \gamma)$$

- S = {states}
- *A* = {actions}
- *E* = {exogenous events}
- State-transition function

$$\gamma: S \times (A \cup E) \rightarrow 2^S$$

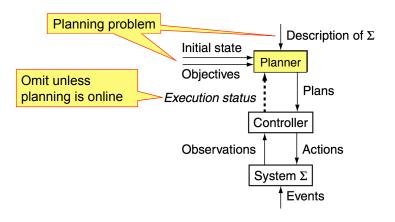

- $S = \{s_0, ..., s_5\}$
- A = {move1, move2, put, take, load, unload}
- E = {}
- γ: see the arrows

State Transition System


$$\Sigma = (S, A, E, \gamma)$$

- *S* = {states}
- *A* = {actions}
- *E* = {exogenous events}
- State-transition function $\gamma: S \times (A \cup E) \rightarrow 2^S$
 - $S = \{s_0, ..., s_5\}$
 - A = {move1, move2, put, take, load, unload}
 - *E* = {}
 - γ: see the arrows

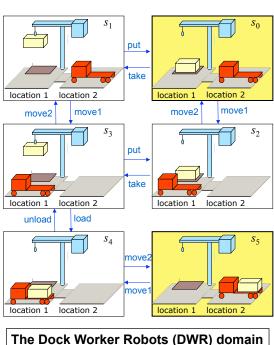
Dock Worker Robots (DWR):



Conceptual Model

Conceptual Model

3. Planner's Input


Planning Problem

$$P = (\Sigma, s_0, G)$$

Σ: System Description

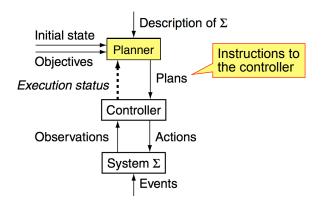
 s_{θ} : Initial state(s) E.g., Initial state = s_0

G: Objective
Goal state,
Set of goal states,
Set of tasks,
"trajectory" of states,
Objective function, ...
E.g., Goal state = s₅

Planning Problem

$$P = (\Sigma, s_0, G)$$

Σ: System Description


 s_o : Initial state(s) E.g., Initial state = s_0

G: Objective
Goal state,
Set of goal states,
Set of tasks,
"trajectory" of states,
Objective function, ...
E.g., Goal state = s₅

Conceptual Model

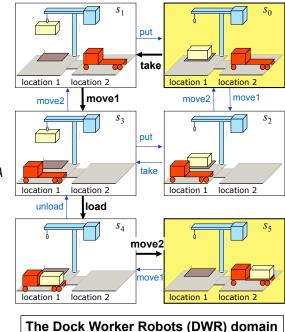
21

4. Planner's Output

22

Plans

Classical plan:


a sequence of actions
E.g.,

⟨take, move1, load, move2⟩

Policy:

partial function from ${\mathcal S}$ into ${\mathcal A}$

E.g., $\{(s_0, take), (s_1, move1), (s_3, load), (s_4, move2)\}$

Outline

- · Conceptual model for planning
- → Classes of planning problems
- Classes of planners and example instances
- Beyond planning
- Planning research the big picture
- Some of what I hope you'll get from the course

25

Planning

Agent: single agent or multi-agent

State:

complete or incomplete (logical/probabilistic) state of the world and/or agent's state of knowledge

Actions:

world-altering and/or knowledge-altering (e.g. sensing) deterministic or non-deterministic (logical/stochastic)

Goal Condition:

satisficing or optimizing final-state or temporally extended/control knowledge/script optimizing: preferences or cost or utility or ...

Reasoning:

offline or online (fully observable, partially observable)

Plans:

sequential, partial order, conformant, contingent, conditional (controller or policy)

Different Classes Planning Problems

Varying components of the planning problem specification yields different classes of problems. E.g.,

dynamics: deterministic, nondeterministic, stochastic

observability: full, partial, none

horizon: finite, infinite

objective requirement: satisfying, optimizing

...

Different Classes Planning Problems

dynamics: deterministic, nondeterministic, stochastic

observability: full, partial, none

horizon: finite, infinite

objective requirement: satisfying, optimizing

...

classical planning

conditional planning with full observability (FOND)

conditional planning with partial observability (POND)

conformant planning

markov decision processes (MDP)

partial observable MDP (POMDP)

• preference-based/over-subscription planning

Different Classes Planning Problems

dynamics: deterministic, nondeterministic, stochastic

observability: full, partial, none

horizon: finite, infinite

objective requirement: satisfying, optimizing

. . .

classical planning

conditional planning with full observability (FOND)

conditional planning with partial observability (POND)

conformant planning

markov decision processes (MDP)

• partial observable MDP (POMDP)

preference-based/over-subscription planning

29

Different Classes Planning Problems

dynamics: deterministic, nondeterministic, stochastic

observability: full, partial, none

horizon: finite, infinite

objective requirement: satisfying, optimizing

...

classical planning

conditional planning with full observability

conditional planning with partial observability

conformant planning

markov decision processes (MDP)

partial observable MDP (POMDP)

preference-based/over-subscription planning

Different Classes Planning Problems

dynamics: deterministic, nondeterministic, stochastic

observability: full, partial, none

horizon: finite, infinite

objective requirement: satisfying, optimizing

• • •

classical planning

conditional planning with full observability

conditional planning with partial observability

conformant planning

markov decision processes (MDP)

• partial observable MDP (POMDP)

preference-based/over-subscription planning

Different Classes Planning Problems

dynamics: deterministic, nondeterministic, stochastic

observability: full, partial, none

horizon: finite, infinite

objective requirement: satisfying, optimizing

...

- classical planning
- conditional planning with full observability
- conditional planning with partial observability
- conformant planning
- markov decision processes (MDP)
- partial observable MDP (POMDP)
- preference-based/over-subscription planning

Different Classes Planning Problems

dynamics: deterministic, nondeterministic, stochastic

observability: full, partial, none

horizon: finite, infinite

objective requirement: satisfying, optimizing

...

- classical planning
- conditional planning with full observability
- conditional planning with partial observability
- conformant planning
- markov decision processes (MDP)
- partial observable MDP (POMDP)
- preference-based/over-subscription planning

Different Classes Planning Problems

dynamics: deterministic, nondeterministic, stochastic

observability: full, partial, none

horizon: finite, infinite

objective requirement: satisfying, optimizing

...

- classical planning
- · conditional planning with full observability
- conditional planning with partial observability
- conformant planning
- markov decision processes (MDP)
- partial observable MDP (POMDP)
- preference-based/over-subscription planning

Other Dimensions

dynamics: deterministic, nondeterministic, stochastic

explicit time, implicit timeinstantaneous, durativecontinuous, discrete, hybrid

agents: multi-agent perception: perfect, noisy horizon: finite, infinite

objective requirement: satisfying, optimizing

objective form: final-state goal, temporally-extended goal, control knowledge,

hierarchical task network (HTN), script/program (Golog)

plan form: sequential plan, partial order plan, controller, policy, generalized plan, program...

pian, program..

- classical planning
- conditional planning with full observability
- conditional planning with partial observability
- conformant planning
- markov decision processes (MDP)
- partial observable MDP (POMDP)
- preference-based/over-subscription planning

34

Other Dimensions

...and what do we do if we don't have a model? We don't know the transition functions. We don't know the reward we get from different actions.

Model-Free Planning

Reinforcement learning

37

Different Classes Planning Problems

Components of a Planning Problem: $(\Sigma, s0, G)$ Varying these components defines different classes of planning problems and different planning output.

Dynamics: deterministic, nondeterministic, probabilistic

Observability: full, partial, none

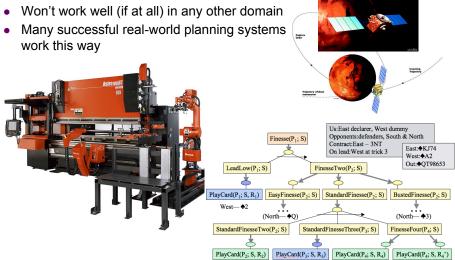
Horizon: finite, infinite

Why is Planning Difficult?

- solutions to classical planning problems are paths from an initial state to a goal state in the transition graph
 - Efficiently solvable by Dijkstra's algorithm in O(|V| log |V| + |E|) time
 - Why don't we solve all planning problems this way?
- state space may be huge: 10⁹, 10¹², 10¹⁵, ...states
- · constructing the transition graph is infeasible!
- planning algorithms try to avoid constructing whole graph
- planning algorithms often are but not guaranteed to be more effiencient that obvious solution methods constructing the transition graph and using e.g., Dijkstra's algorithm

Outline

- Conceptual model for planning
- Classes of planning problems
- → Classes of planners and example instances
- Beyond planning
- Planning research the big picture
- Some of what I hope you'll get from the course


Three Main Classes of Planners

- 1. Domain-specific
- 2. Domain-independent
- 3. Domain-customizable

* Ghallab, Nau, and Traverso's use "configurable" (which I don't like) Also called "Domain-specific" or "Knowledge-Based"

1. Domain-Specific Planners

· Made or tuned for specific domain

2. Domain-Independent Planners

- In principle, a domain-independent planner works in any planning domain
- Uses no domain-specific knowledge except the definitions of the basic actions

2. Domain-Independent Planners

- In practice,
 - Not feasible to develop domain-independent planners that work in every possible domain
- Make simplifying assumptions to restrict the set of domains
 - Classical planning
 - Historical focus of most automated-planning research

Very active area of research. Many excellent planning systems.

Restrictive Assumptions

- A0: Finite system:
 - finitely many states, actions, events
- A1: Fully observable:
 - the controller always knows the system's current state
- A2: Deterministic:
 - each action has only one outcome
- A3: Static (no exogenous events):
 - changes only occur as the result of the controller's actions
- A4: Attainment goals:
 - a set of goal states S_a
- A5: Sequential plans:
 - a plan is a linearly ordered sequence of actions (a₁, a₂, ... a_n)
- A6: Implicit time:
 - Actions are instantaneous (have no duration)
- A7: Off-line planning:
 - planner doesn't know the execution status

c a Approach: Plan-Space Planning b (Partial-Order Planning) Start Decompose sets of goals into slear(x), with x = athe individual oals unstack(x,a) Plan for them separately Bookkeeping info to detect clear(a) clear(b). and resolve interactions putdown(x)handempty handempty pickup(b) pickup(a) holding(a) holding(a) b stack(a,b) stack(b,c) С For classical planning, on(a,b) not used muck any more on(b,c) Mars rovers use temporal-planning Goal: on(a,b) & on(b,c) extensions of it

Approach: Heuristic Search

The fastest state-of-the-art automated planning systems exploit Heuristic Search

Rick will be talking about this in the next hour

Approach: Translation to General Problem Solver

IDEA: Translate the planning problem into another kind of problem for which there are efficient solvers

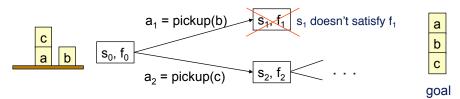
- Find a solution to that problem
- Extract the plan from the solution, (sometimes w/ optimality guarantees)

Example "General Problem Solvers"

- SAT solvers
 - M [Rintanen]**, SATplan and Blackbox [Kautz & Selman]
- CSP solver
- Answer Set Programming (ASP) solvers
 - [Son et al.], [Lifschitz et al.], etc.
- Integer programming solvers such as Cplex
 - [Vossen et al.]
- MaxSAT

Approach: HTN Planning

- Problem reduction
 - Tasks (activities) rather than goals
 - Methods to decompose tasks into subtasks
 - Enforce constraints, backtrack if necessary
- Real-world applications
- Noah, Nonlin, O-Plan, SIPE, SIPE-2,SHOP, SHOP2


3. Domain-customizable

- Domain-independent planners are quite slow compared with domain-specific planners
 - Blocks world in linear time [Slaney and Thiébaux, A.I., 2001]
 - Can get analogous results in many other domains
- But don't want to write a new planner for every domain!
- Domain-customizable planners
 - Domain-independent planning engine
 - Input (the "objective") includes info about how to solve problems in the domain.
 - Hierarchical Task Network (HTN) planning
 - Planning with control formulas
 - Planning with a plan script or agent program

travel(x,y)Task: Method: taxi-travel(x,y)*Method:* air-travel(x,y)get-ticket(a(x),a(y)) get-taxi ride(x,y)→ pay-driver fly(a(x),a(y))travel(a(y),y)travel(x,a(x))travel(UMD, Toulouse) get-ticket(BWI, TLS) get-ticket(IAD, TLS) go-to-Orbitz go-to-Orbitz find-flights(BWI,TLS find-flights(IAD,TLS) buy-ticket(IAD,TLS) BACKTRACK travel(UMD, IAD) get-taxi ride(UMD, IAD) pay-driver fly(BWI, Toulouse) travel(TLS, LAAS) get-taxi ride(TLS, Toulouse) pay-driver

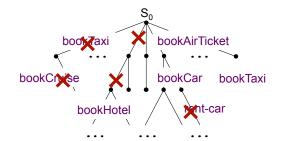
^{**} competitive with state-of-the art heuristic search.

Approach: Planning with Control Formulas

• At each state s_i we have a control formula f_i in temporal logic

- For each successor of s, derive a control formula using *logical* progression
- Prune any successor state in which the progressed formula is false
 - TLPlan [Bacchus & Kabanza]
 - TALplanner [Kvarnstrom & Doherty]

Approach: Planning w/ Program or Plan Script


E.g., **Golog** [Levesque et al.]

Nondeterministic programs that act as procedural control knowledge, placing constraints on the valid action sequence/plans

E.g., bookAirTicket(x); if far then bookCar(x) else bookTaxi(y)

procedural constructs:

- sequence
- if-then-else
- nondeterministic choice
- while-do, etc.

53

Three Main Classes of Planners

- 1. Domain-specific
- Domain-independent
 E.g., Planning graph-based, SAT-based, heuristic search
- Domain-customizable
 E.g., HTN, domain control formula, agent programs/scripts

Outline

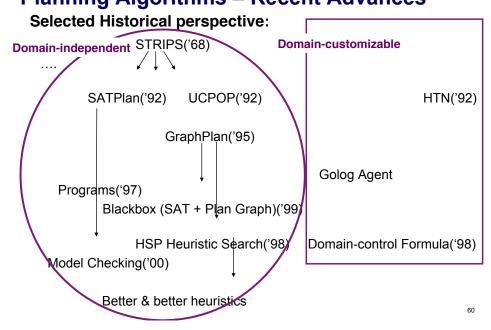
- Conceptual model for planning
- Classes of planning problems
- Classes of planners and example instances
- → Beyond planning
- Planning research the big picture
- Some of what I hope you'll get from the course

Broad Application of Planning Techniques

Planning algorithms are applicable to a broad range of applications that can roughly be viewed as reachability problems. E.g.,

- Software verification
- Diagnosis of dynamical systems
- Story understanding
- Situation assessment/Plan recognition
- Gene rearrangement
- ...

Outline


- Conceptual model for planning
- Classes of planning problems
- Classes of planners and example instances
- Beyond planning
- → Planning research
- Some of what I hope you'll get from the course

Planning Research – The big picture

At least four research communities that make fundamental contributions to research in planning:

- 1) Knowledge Representation and Reasoning Community
- 2) Automated Planning and Scheduling Community
- 3) Search Community
- 4) Machine Learning Community

Planning Algorithms – Recent Advances

-0

Planning Research – The big picture

The Landscape: CONFERENCES

ICAPS* (Int. Conf on Al Planning and Scheduling)
*merging of AIPS and ECP

SoCS (Symposium on Combinatorial Search)

AAMAS (Int. Conf. on Autonomous Agents and Multiagent Systems)

KR

UAI (Uncertainty in AI) for MDP, POMDP, RL

ML, NIPS, \dots for RL

IJCAI, AAAI, ECAI

JOURNALS

JAIR, AIJ, ...

BIENNIAL COMPETITION and BENCHMARKING DOMAINS

IPC-*n* (International Planning Competition)
PDDL (Planning Domain Definition Language)
standard input language for most benchmark problem sets

Outline

- Conceptual model for planning
- Classes of planning problems
- Classes of planners and example instances
- Beyond planning
- Planning research the big picture
- → Some of what I hope you'll get from the course

Planning Research – The big picture

Recent Advances

Very "active" field -- lots of papers in top conferences

- Tremendous strides in deterministic plan synthesis
 - Biennial Intl. Planning Competitions
- Current interest is in exploiting the insights from deterministic planning techniques to other planning scenarios

Some topics of recent focus:

- Better heuristics
- Better search, real-time search, sampling,
- Richer domain customization (including preferences)
- From discrete to timed hybrid and/or continuous systems
- Planning and learning