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Large State Space 
 

• Value Iteration, Policy Iteration and Linear 
Programming 
– Complexity at least quadratic in |𝑆| 

 
• Problem: |𝑆| may be very large 

– Queuing problems: infinite state space 
– Factored problems: exponentially many states 
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Mitigate Size of State Space 
 

• Two ideas: 
 

• Exploit initial state 
– Not all states are reachable  

 
• Exploit heuristic ℎ  

– approximation of optimal value function 
– usually an upper bound ℎ 𝑠 ≥ 𝑉∗ 𝑠  ∀𝑠 
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State Space 
 

State space |𝑆| 

𝑠0 
Reachable states 

States reachable by 𝜋∗ 
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LAO* Algorithm 
• Related to  

– A*: path heuristic search 
– AO*: tree heuristic search 
– LAO*: cyclic graph heuristic search  

 
• LAO* alternates between  

– State space expansion 
– Policy optimization  

• value iteration, policy iteration, linear programming 
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AND/OR graphs
▪ Some problems are best represented as 

achieving subgoals, some of which 
achieved simultaneously and 
independently (AND) 

▪ Up to now, only dealt with OR options 
        
        
        
        

Possess TV set

Steal TV Earn Money Buy TV



Searching AND/OR graphs
▪ A solution in an AND-OR tree is a sub tree 

whose leafs are included in the goal set 

▪ Cost function: sum of costs in AND node 
 f(n) = f(n1) + f(n2) + …. + f(nk) 

▪ How can we extend A* to search AND/OR 
trees?  The AO* algorithm.



AND/OR search 
▪ We must examine several nodes 

simultaneously when choosing the next 
move

A

B C D
38

E F G H I J
17 9 27

(5) (10) (3) (4) (15) (10)

A

B C D(3)
(4)

(5)
(9)



AND/OR Best-First-Search
▪ Traverse the graph (from the initial node) 

following the best current path. 
▪ Pick one of the unexpanded nodes on that 

path and expand it.  Add its successors to 
the graph and compute f  for each of them 

▪ Change the expanded node’s f value to 
reflect its successors.  Propagate the 
change up the graph.  

▪  Reconsider the current best solution and 
repeat until a solution is found



AND/OR Best-First-Search 
example
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AND/OR Best-First-Search example
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A Longer path may be better
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Interacting Sub goals
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AO* algorithm

1. Let G be a graph with only starting node INIT. 
2. Repeat the followings until INIT is labeled SOLVED 

or h(INIT) >  FUTILITY 
a) Select an unexpanded node from the most promising 

path from INIT (call it NODE) 
b) Generate successors of NODE. If there are none, set 

h(NODE) = FUTILITY (i.e., NODE is unsolvable); 
otherwise for each SUCCESSOR that is not an ancestor 
of NODE do the following: 

i. Add SUCCESSSOR to G. 
ii. If SUCCESSOR is a terminal node, label it SOLVED and 

set  h(SUCCESSOR) = 0. 
iii. If SUCCESSPR is not a terminal node, compute its h



AO* algorithm (Cont.)
c) Propagate the newly discovered information up the 

graph by doing the following: let S be set of SOLVED 
nodes or nodes whose h values have been changed 
and need to have values propagated back to their 
parents. Initialize S to Node. Until S is empty repeat 
the followings: 

i. Remove a node from S and call it CURRENT. 
ii. Compute the cost of each of the arcs emerging from 

CURRENT. Assign minimum cost of its successors as its h. 
iii. Mark the best path out of CURRENT by marking the arc that 

had the minimum cost in step ii 
iv. Mark CURRENT as SOLVED if all of the nodes connected to it 

through new labeled arc have been labeled SOLVED 
v. If CURRENT has been labeled SOLVED or its cost was just 

changed, propagate its new cost back up through the graph. 
So add all of the ancestors of CURRENT to S.



An Example



An Example
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An Example
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An Example
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An Example
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An Example
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An Example
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▪ Considers the cost (> 0) for switching from one branch to 
another in the search 

▪ Example: path finding in real life

A CBDF E G

11 4 1 2 167

f(B) = 1 + 1 = 2                     (A)                                   f(C) =  1 + 2 = 3 
f(D) = 1 + 4 = 5                 (B)                                                   f(A) =  1 + 3 = 4 
f(B) = 1 + 5 = 6                                  (A)                                   f(C) =  1 + 2 = 3 
f(A) = 1 + 6 = 7                          (C)                   f(E) =  1 + 7 = 8 
f(B) = 1 + 5 = 6                     (A)                                   f(C) =  1 + 8 = 9 
f(D) = 1 + 4 = 5      (B)                                                   f(A) =  1 + 9 = 10 
f(F)=1+11= 12   (D)                                                                   f(B) =  1 + 10 = 11 

Real Time A*
▪ Considers the cost (> 0) for switching from one branch to 

another in the search 
▪ Example: path finding in real life

A CBDF E G

11 4 1 2 167

f(B) = 1 + 1 = 2                     (A)                                   f(C) =  1 + 2 = 3 
f(D) = 1 + 4 = 5                 (B)                                                   f(A) =  1 + 3 = 4 
f(B) = 1 + 5 = 6                                  (A)                                   f(C) =  1 + 2 = 3 
f(A) = 1 + 6 = 7                          (C)                   f(E) =  1 + 7 = 8 
f(B) = 1 + 5 = 6                     (A)                                   f(C) =  1 + 8 = 9 
f(D) = 1 + 4 = 5      (B)                                                   f(A) =  1 + 9 = 10 
f(F)=1+11= 12   (D)                                                                   f(B) =  1 + 10 = 11 



Another Example
Current State = S 
 f(A) = 3 + 5 = 8                   
 f(B) = 2 + 4 = 6 

Current State = B 
 f(S) = 2 + 8 = 10                                                                   

f(A) = 4 + 5 = 9 
 f(C) = 1 + 5 = 6 
 f(E) = 4 + 2 = 6 

Current State = C 
 f(H) = 2 + 4 = 6 
 f(B) = 1 + 6 = 7
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Current State = H 
 f(C) = 2 + 7 = 9                   

Current State = C 
 f(B) = 1 + 6 = 7 
 f(H) = ∞ 
Current State = B 
 f(S) = 2 + 8 = 10 
 f(A) = 4 + 5 = 9 
 f(E) = 4 + 2 = 6 
 f(C) = ∞ 

Current State = E 
 f(B) = 4 + 9 = 13 
 f(D) = 3 + 2 = 5 
 f(F) = 1 + 1 = 2
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Another Example
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Current State = F 
 f(E) = 1 + 5 = 6                   

Current State = E 
 f(D) = 3 + 2 = 5 
 f(B) = 4 + 9 = 13 
 f(F) = ∞ 
Current State = D 
 f(G) = 2 + 0 = 2 
 f(E) = 3 + 13 = 16 

Visited Nodes = 
S, B, C, H, C, B, E, F, E, D, G 

Path = S, B, E, D, G

Another Example
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Terminology 
• 𝑆: state space 

 

• 𝑆𝐸 ⊆ 𝑆: envelope  
– Growing set of states 

 

• 𝑆𝑇 ⊆ 𝑆𝐸: terminal states 
– States whose children are not in the envelope 

 

• 𝑆𝑠0
𝜋 ⊆ 𝑆𝐸: states reachable from 𝑠0 by following 𝜋 

 

• ℎ(𝑠): heuristic such that ℎ 𝑠 ≥ 𝑉∗ 𝑠  ∀𝑠 
– E.g., ℎ 𝑠 = max

𝑠,𝑎
𝑅(𝑠, 𝑎)/(1 − 𝛾) 
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LAO* Algorithm 
 

 
 
 
 
 
 
 
 
 

LAO*(MDP, heuristic ℎ) 
   𝑆𝐸 ← {𝑠0}, 𝑆𝑇 ← {𝑠0} 
   Repeat 

      Let 𝑅𝐸 𝑠, 𝑎 =  ℎ(𝑠) 𝑠 ∈ 𝑆𝑇
𝑅(𝑠, 𝑎) otherwise 

      Let 𝑇𝐸(𝑠′|𝑠, 𝑎) =  
0 𝑠 ∈ 𝑆𝑇

Pr (𝑠′|𝑠, 𝑎) otherwise 

      Find optimal policy 𝜋 for 𝑆𝐸, 𝑅𝐸, 𝑇𝐸  
      Find reachable states 𝑆𝑠0

𝜋  
      Select reachable terminal states s1, … , sk ⊆ 𝑆𝑠0

𝜋 ∩ 𝑆𝑇  
      𝑆𝑇 ← (𝑆𝑇  ∖ 𝑠1, … , 𝑠𝑘 ) ∪ (𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑠1, … , 𝑠𝑘 ∖ 𝑆𝐸)  
      𝑆𝐸 ← 𝑆𝐸 ∪ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛( 𝑠1, … , 𝑠𝑘 ) 
Until 𝑆𝑠0

𝜋 ∩ 𝑆𝑇 is empty 
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Efficiency 
 

Efficiency influenced by 
 

1. Choice of terminal states to add to envelope 
 

2. Algorithm to find optimal policy 
– Can use value iteration, policy iteration, modified 

policy iteration, linear programming 
– Key: reuse previous computation 

• E.g., start with previous policy or value function at each 
iteration 
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Convergence 
• Theorem: LAO* converges to the optimal policy 
• Proof:  

– Fact: At each iteration, the value function 𝑉 is an 
upper bound on 𝑉∗ due to the heuristic function ℎ 

– Proof by contradiction: suppose the algorithm stops, 
but 𝜋 is not optimal. 

• Since the algorithm stopped, all states reachable by 𝜋 are in 
𝑆𝐸 ∖ 𝑆𝑇 

• Hence, the value function 𝑉 is the value of 𝜋 and since 𝜋 is 
suboptimal then 𝑉 < 𝑉∗, which contradicts the fact that 𝑉 is an 
upper bound on 𝑉∗ 
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Summary 
 

• LAO* 
– Extension of basic solution algorithms (value iteration, 

policy iteration, linear programming) 
– Exploit initial state and heuristic function 
– Gradually grow an envelope of states 
– Complexity depends on # of reachable states instead 

of size of state space 


