
LAO*	Paper	Presentation
Jonathan	Eidelman

CSC2542
University	of	Toronto

Fall	2016

Acknowledgements

The	slides	on	LAO*	are	those	of	Pascal	Poupart.

The	slides	on	AO*	are	those	of	Gholamreza Ghassem-Sani.

Thank	you	to	both	researchers	for	sharing	their	slides	on	the	web.

Module 9
LAO*

CS 886 Sequential Decision Making and
Reinforcement Learning
University of Waterloo

CS886 (c) 2013 Pascal Poupart

2

Large State Space

• Value Iteration, Policy Iteration and Linear
Programming
– Complexity at least quadratic in |𝑆|

• Problem: |𝑆| may be very large

– Queuing problems: infinite state space
– Factored problems: exponentially many states

CS886 (c) 2013 Pascal Poupart

3

Mitigate Size of State Space

• Two ideas:

• Exploit initial state
– Not all states are reachable

• Exploit heuristic ℎ

– approximation of optimal value function
– usually an upper bound ℎ 𝑠 ≥ 𝑉∗ 𝑠 ∀𝑠

CS886 (c) 2013 Pascal Poupart

4

State Space

State space |𝑆|

𝑠0
Reachable states

States reachable by 𝜋∗

CS886 (c) 2013 Pascal Poupart

6

LAO* Algorithm
• Related to

– A*: path heuristic search
– AO*: tree heuristic search
– LAO*: cyclic graph heuristic search

• LAO* alternates between

– State space expansion
– Policy optimization

• value iteration, policy iteration, linear programming

Slides by: Gholamreza
Ghassem-Sani

AO* REVIEW

AND/OR graphs
▪ Some problems are best represented as

achieving subgoals, some of which
achieved simultaneously and
independently (AND)

▪ Up to now, only dealt with OR options

Possess TV set

Steal TV Earn Money Buy TV

Searching AND/OR graphs
▪ A solution in an AND-OR tree is a sub tree

whose leafs are included in the goal set

▪ Cost function: sum of costs in AND node
 f(n) = f(n1) + f(n2) + …. + f(nk)

▪ How can we extend A* to search AND/OR
trees? The AO* algorithm.

AND/OR search
▪ We must examine several nodes

simultaneously when choosing the next
move

A

B C D
38

E F G H I J
17 9 27

(5) (10) (3) (4) (15) (10)

A

B C D(3)
(4)

(5)
(9)

AND/OR Best-First-Search
▪ Traverse the graph (from the initial node)

following the best current path.
▪ Pick one of the unexpanded nodes on that

path and expand it. Add its successors to
the graph and compute f for each of them

▪ Change the expanded node’s f value to
reflect its successors. Propagate the
change up the graph.

▪ Reconsider the current best solution and
repeat until a solution is found

AND/OR Best-First-Search
example

A

B C D(3)
(4)

(5)
(9)

A
(5)

2.1.

A

B C
D

E F(4) (4)
(10)

(3)
(9)

(4)
(10)

3.

AND/OR Best-First-Search example

B C D

G H E F(5) (7) (4) (4)
(10)

(6)
(12)

(4) (10)

4. A

A Longer path may be better

B C D

G H E F

A

JI

Unsolvable B C D

G H E F

A

JI

Unsolvable

Interacting Sub goals

C

D

E

A

(2)(5)

AO* algorithm

1. Let G be a graph with only starting node INIT.
2. Repeat the followings until INIT is labeled SOLVED

or h(INIT) > FUTILITY
a) Select an unexpanded node from the most promising

path from INIT (call it NODE)
b) Generate successors of NODE. If there are none, set

h(NODE) = FUTILITY (i.e., NODE is unsolvable);
otherwise for each SUCCESSOR that is not an ancestor
of NODE do the following:

i. Add SUCCESSSOR to G.
ii. If SUCCESSOR is a terminal node, label it SOLVED and

set h(SUCCESSOR) = 0.
iii. If SUCCESSPR is not a terminal node, compute its h

AO* algorithm (Cont.)
c) Propagate the newly discovered information up the

graph by doing the following: let S be set of SOLVED
nodes or nodes whose h values have been changed
and need to have values propagated back to their
parents. Initialize S to Node. Until S is empty repeat
the followings:

i. Remove a node from S and call it CURRENT.
ii. Compute the cost of each of the arcs emerging from

CURRENT. Assign minimum cost of its successors as its h.
iii. Mark the best path out of CURRENT by marking the arc that

had the minimum cost in step ii
iv. Mark CURRENT as SOLVED if all of the nodes connected to it

through new labeled arc have been labeled SOLVED
v. If CURRENT has been labeled SOLVED or its cost was just

changed, propagate its new cost back up through the graph.
So add all of the ancestors of CURRENT to S.

An Example

An Example
A(8)

An Example

C
DB

A

(8)(1)

(2)

[12]
4 5

5

[13]

An Example

C
DB

A

(8)(4)

(2)

[15]
4 5

5

[13]

2

An Example

C
DB

A

(3)(4)

G

E

(2)

(1)

(0)

[15]
4 5

5
2

2
4

[8]

An Example

C
DB

A

(4)(4)

G

E

(2)

(3)

(0)

[15]
4 5

5
2

2
2

4

[9]

3

An Example

C
DB

A

(4)

G

E

(2)

(3)

(0)

[15]
4 5

5
2

2
2

4

Solved

3

Solved

Solved

▪ Considers the cost (> 0) for switching from one branch to
another in the search

▪ Example: path finding in real life

A CBDF E G

11 4 1 2 167

f(B) = 1 + 1 = 2 (A) f(C) = 1 + 2 = 3
f(D) = 1 + 4 = 5 (B) f(A) = 1 + 3 = 4
f(B) = 1 + 5 = 6 (A) f(C) = 1 + 2 = 3
f(A) = 1 + 6 = 7 (C) f(E) = 1 + 7 = 8
f(B) = 1 + 5 = 6 (A) f(C) = 1 + 8 = 9
f(D) = 1 + 4 = 5 (B) f(A) = 1 + 9 = 10
f(F)=1+11= 12 (D) f(B) = 1 + 10 = 11

Real Time A*
▪ Considers the cost (> 0) for switching from one branch to

another in the search
▪ Example: path finding in real life

A CBDF E G

11 4 1 2 167

f(B) = 1 + 1 = 2 (A) f(C) = 1 + 2 = 3
f(D) = 1 + 4 = 5 (B) f(A) = 1 + 3 = 4
f(B) = 1 + 5 = 6 (A) f(C) = 1 + 2 = 3
f(A) = 1 + 6 = 7 (C) f(E) = 1 + 7 = 8
f(B) = 1 + 5 = 6 (A) f(C) = 1 + 8 = 9
f(D) = 1 + 4 = 5 (B) f(A) = 1 + 9 = 10
f(F)=1+11= 12 (D) f(B) = 1 + 10 = 11

Another Example
Current State = S
 f(A) = 3 + 5 = 8
 f(B) = 2 + 4 = 6

Current State = B
 f(S) = 2 + 8 = 10

f(A) = 4 + 5 = 9
 f(C) = 1 + 5 = 6
 f(E) = 4 + 2 = 6

Current State = C
 f(H) = 2 + 4 = 6
 f(B) = 1 + 6 = 7

A B

C

S

(4)

(4) D

(5)
2

(2)

G

(1)

E

(2)H

(0)

3
4

41

(5)

F
2 13

2

Current State = H
 f(C) = 2 + 7 = 9

Current State = C
 f(B) = 1 + 6 = 7
 f(H) = ∞
Current State = B
 f(S) = 2 + 8 = 10
 f(A) = 4 + 5 = 9
 f(E) = 4 + 2 = 6
 f(C) = ∞

Current State = E
 f(B) = 4 + 9 = 13
 f(D) = 3 + 2 = 5
 f(F) = 1 + 1 = 2

A B

C

S

(4)

(4) D

(5)
2

(2)

G

(1)

E

(2)H

(0)

3
4

41

(5)

F
2 13

2

Another Example

A B

C

S

(4)

(4) D

(5)
2

(2)

G

(1)

E

(2)H

(0)

3
4

41

(5)

F
2 13

2

Current State = F
 f(E) = 1 + 5 = 6

Current State = E
 f(D) = 3 + 2 = 5
 f(B) = 4 + 9 = 13
 f(F) = ∞
Current State = D
 f(G) = 2 + 0 = 2
 f(E) = 3 + 13 = 16

Visited Nodes =
S, B, C, H, C, B, E, F, E, D, G

Path = S, B, E, D, G

Another Example

CS886 (c) 2013 Pascal Poupart

7

Terminology
• 𝑆: state space

• 𝑆𝐸 ⊆ 𝑆: envelope
– Growing set of states

• 𝑆𝑇 ⊆ 𝑆𝐸: terminal states
– States whose children are not in the envelope

• 𝑆𝑠0
𝜋 ⊆ 𝑆𝐸: states reachable from 𝑠0 by following 𝜋

• ℎ(𝑠): heuristic such that ℎ 𝑠 ≥ 𝑉∗ 𝑠 ∀𝑠
– E.g., ℎ 𝑠 = max

𝑠,𝑎
𝑅(𝑠, 𝑎)/(1 − 𝛾)

CS886 (c) 2013 Pascal Poupart

8

LAO* Algorithm

LAO*(MDP, heuristic ℎ)
 𝑆𝐸 ← {𝑠0}, 𝑆𝑇 ← {𝑠0}
 Repeat

 Let 𝑅𝐸 𝑠, 𝑎 = ℎ(𝑠) 𝑠 ∈ 𝑆𝑇
𝑅(𝑠, 𝑎) otherwise

 Let 𝑇𝐸(𝑠′|𝑠, 𝑎) =
0 𝑠 ∈ 𝑆𝑇

Pr (𝑠′|𝑠, 𝑎) otherwise

 Find optimal policy 𝜋 for 𝑆𝐸, 𝑅𝐸, 𝑇𝐸
 Find reachable states 𝑆𝑠0

𝜋
 Select reachable terminal states s1, … , sk ⊆ 𝑆𝑠0

𝜋 ∩ 𝑆𝑇
 𝑆𝑇 ← (𝑆𝑇 ∖ 𝑠1, … , 𝑠𝑘) ∪ (𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑠1, … , 𝑠𝑘 ∖ 𝑆𝐸)
 𝑆𝐸 ← 𝑆𝐸 ∪ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑠1, … , 𝑠𝑘)
Until 𝑆𝑠0

𝜋 ∩ 𝑆𝑇 is empty

CS886 (c) 2013 Pascal Poupart

9

Efficiency

Efficiency influenced by

1. Choice of terminal states to add to envelope

2. Algorithm to find optimal policy
– Can use value iteration, policy iteration, modified

policy iteration, linear programming
– Key: reuse previous computation

• E.g., start with previous policy or value function at each
iteration

CS886 (c) 2013 Pascal Poupart

10

Convergence
• Theorem: LAO* converges to the optimal policy
• Proof:

– Fact: At each iteration, the value function 𝑉 is an
upper bound on 𝑉∗ due to the heuristic function ℎ

– Proof by contradiction: suppose the algorithm stops,
but 𝜋 is not optimal.

• Since the algorithm stopped, all states reachable by 𝜋 are in
𝑆𝐸 ∖ 𝑆𝑇

• Hence, the value function 𝑉 is the value of 𝜋 and since 𝜋 is
suboptimal then 𝑉 < 𝑉∗, which contradicts the fact that 𝑉 is an
upper bound on 𝑉∗

CS886 (c) 2013 Pascal Poupart

11

Summary

• LAO*
– Extension of basic solution algorithms (value iteration,

policy iteration, linear programming)
– Exploit initial state and heuristic function
– Gradually grow an envelope of states
– Complexity depends on # of reachable states instead

of size of state space

