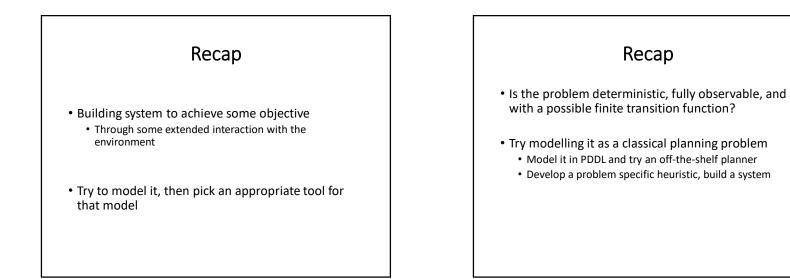


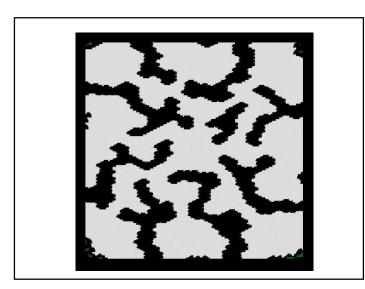
Acknowledgements

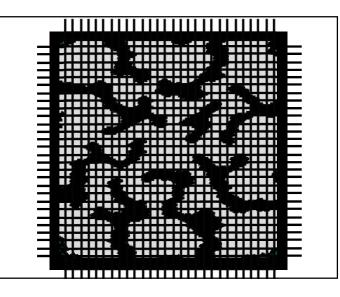
- Images from the RL book
- Based on slides by David Silver and Adam White

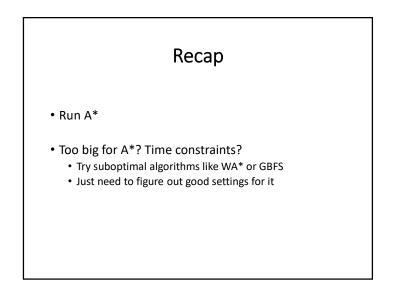
Assignment

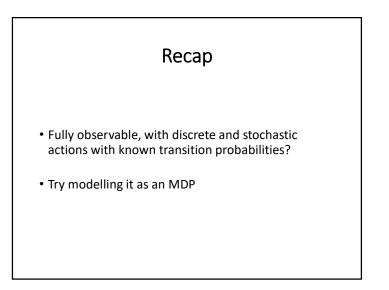
- Grace days
- Questions?

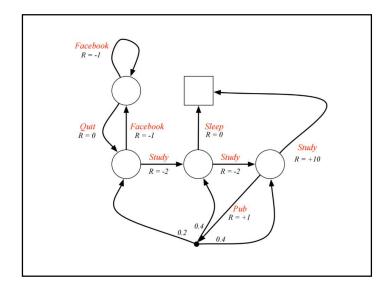


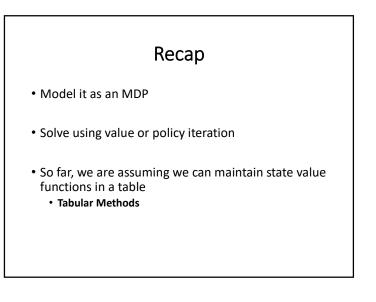


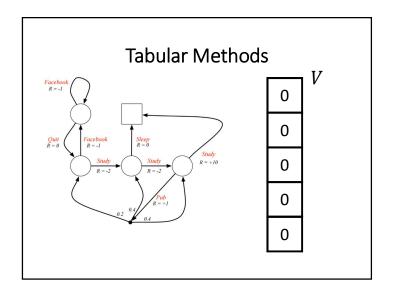


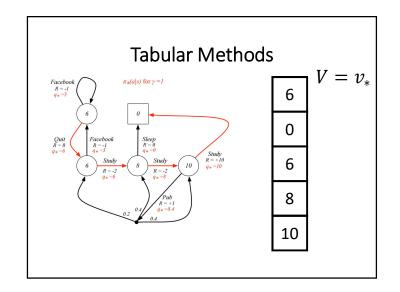


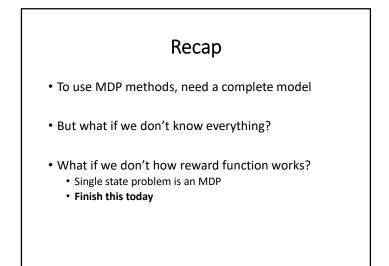


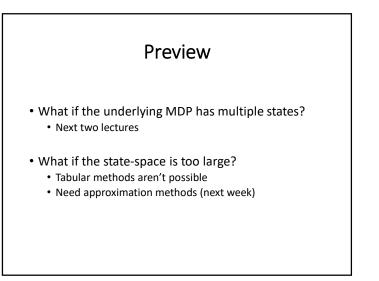








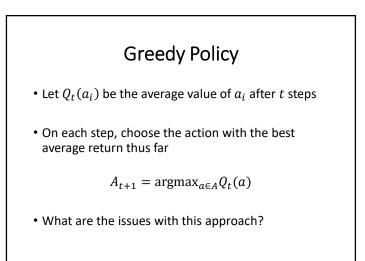


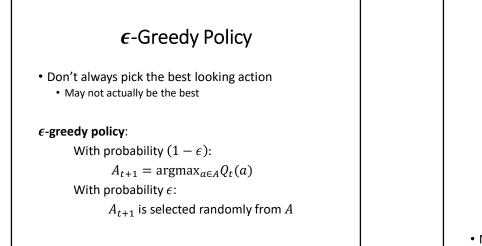


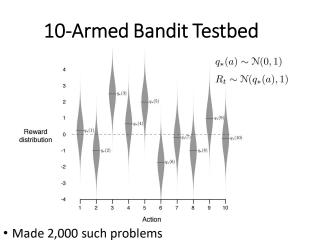
Multi-Armed Bandits

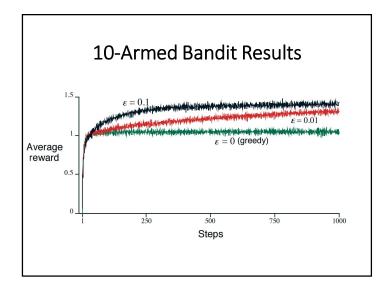
• There are n actions $A = \{a_1, \dots, a_n\}$

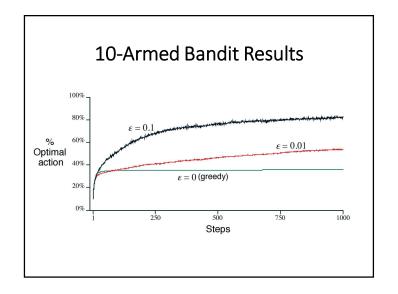
- All actions applicable on all of discrete time steps
 Infinite time steps 1, 2, 3, ...
 - On each time step, pick one to execute. Denoted A_t
- $q^*(s, a_i) = q^*(a_i) = E[R_t|a_i]$
- Agent is trying to maximize total reward over time









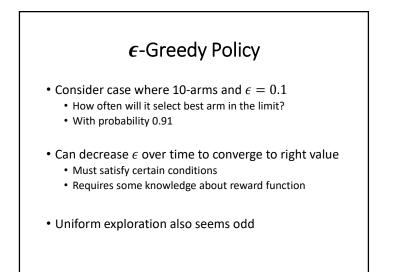


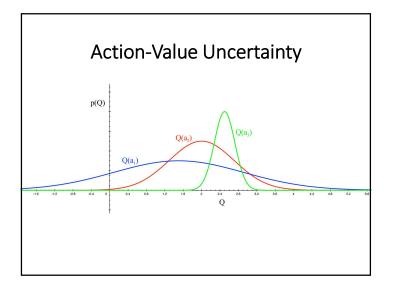
Exploration vs. Exploitation

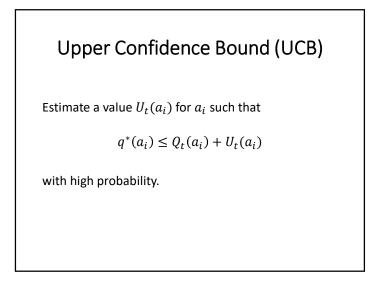
- When select greedily, agent is **exploiting** its information
- When selects randomly, it is exploring
- If we exploit to much, can get stuck with suboptimal values
- If we explore too much, we may be sacrificing a lot of reward that we could have gotten
- Need to balance between the two
 A central dilemma in reinforcement learning

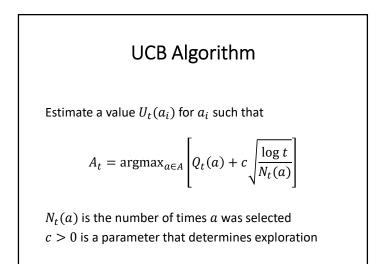
ϵ -Greedy Policy

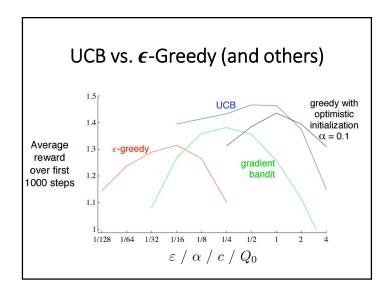
• Consider case where 10-arms and $\epsilon = 0.1$ • How often will it select best arm in the limit?

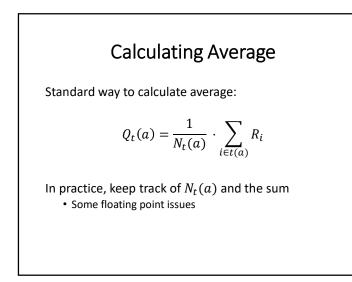


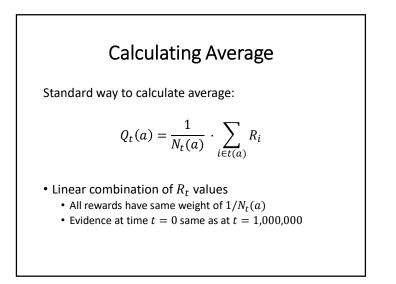


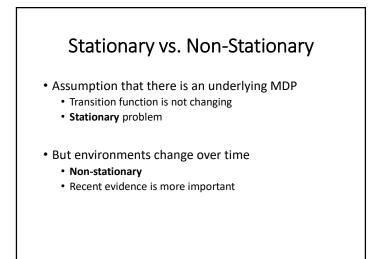












Incremental Average

Incremental way to calculate average:

$$Q_{t+1}(a) = Q_t(a) + \frac{1}{N_t(a)} \cdot (R_{t+1} - q_t(a))$$

In practice, keep track of N_t(a) and q_t(a)
More robust for floating point arithmetic
Flexible

Tracking

Use parameter $\alpha \in (0,1]$

$$Q_{t+1}(a) = Q_t(a) + \alpha \cdot (R_{t+1} - q_t(a))$$

If *a* is always picked, will look like the following:

$$Q_{t+1}(a) = (1-\alpha)^t \cdot R_1 + (1-\alpha)^{t-1} + \dots + \alpha \cdot R_{t+1}$$

Recent evidence is more important

Tracking

Use parameter $\alpha_t(a) \in (0,1]$

$$Q_{t+1}(a) = Q_t(a) + \alpha_t(a) \cdot (R_{t+1} - Q_t(a))$$

Incremental average uses

$$\alpha_t(\alpha) = \frac{1}{t}$$

Tracking

Use parameter $\alpha_t(a) \in (0,1]$

$$Q_{t+1}(a) = Q_t(a) + \alpha_t(a) \cdot (R_{t+1} - Q_t(a))$$

If stationary, Q converge to the true q_* assuming $\alpha_t(a)$ converges to 0 "quickly enough"

State-Value Updates

• Will often use updates of the following

NewEstimate = LastEstimate + StepSize · (Target – LastEstimate)

Target is what we want
Or an estimate (*i.e.* sample) of what we want

Bandit Recap

- Don't know the reward function
- Must balance exploit-explore balance
- ϵ -greedy, UCB as solution techniques
- Incremental average calculation
- Stationary vs non-stationary updates

Beyond Bandits

- What if there are more than one state?
- What if we don't even know the transition function?
- For this class, we will at least assume we know the state-space

Reinforcement Learning

- Learn from interacting with environment
 - Could be an actual environment (like a robot)
 - Or a partially specified model
- Take an action, get a reward, and new state
- Learning to map situations to actions (policy)
 - But without a full model
 - Still trying to maximize the reward

Reinforcement Learning

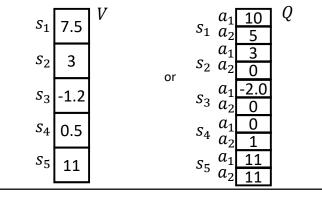
- Learner (agent) not told how to act
 No teacher, no labels on training examples
 At least in "pure" form
- "Trial and error" learning

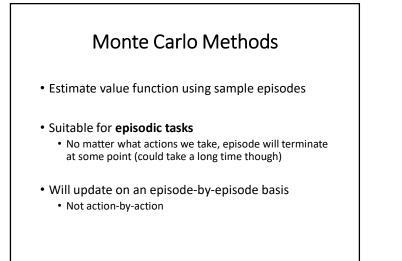
RL Tabular Methods

- Let's assume we can enumerate all possible states
- Can figure out applicable actions in any state
 Just don't know resulting reward, or even transition is
- Just as in DP, consider two problems:
 - 1. Prediction/Evaluation: how well will a policy do?
 - 2. Control: find a good policy

Monte Carlo Methods

• Estimate value function using sample episodes



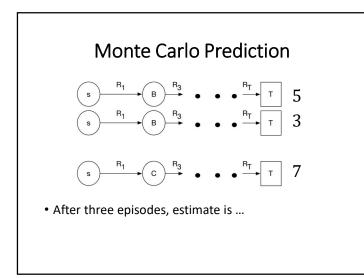


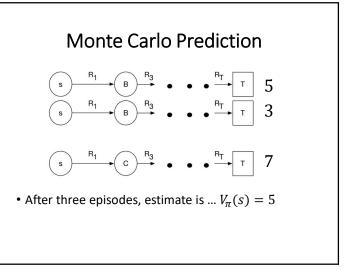
Monte Carlo Prediction

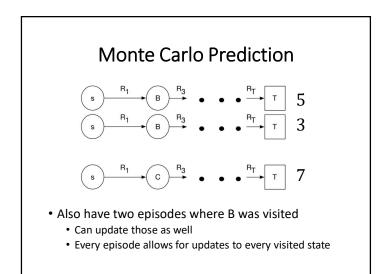
• Recall that G_t is the return we get during an episode after time t

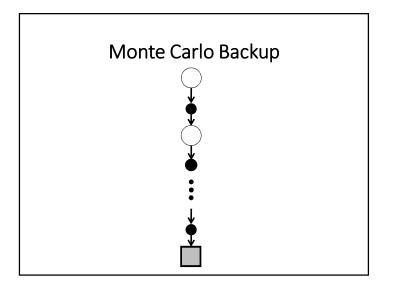
$$v_{\pi}(s) = \mathbf{E}_{\pi}[G_t | S_t = s]$$

• To estimate $v_{\pi}(s)$, run episodes starting in s that use policy π , and average returns seen









First-Visit Monte Carlo Prediction

Initialize:

 $\pi \leftarrow \text{policy to be evaluated} \\ V \leftarrow \text{an arbitrary state-value function} \\ Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π For each state *s* appearing in the episode: $G \leftarrow$ return following the first occurrence of *s* Append *G* to *Returns*(*s*) $V(s) \leftarrow$ average(*Returns*(*s*))

Monte Carlo Prediction

• First-visit only updates a state at most once per episode

• Even if there is "loopy" behaviour

- Can also do **every-visit** where we update for all visits to the state
- Both techniques converge to $v_{\pi}(s)$ for s if s is visited infinitely often in the limit
 - May need exploration to guarantee this

Exploring Starts

- If π is deterministic, only try one action per state
 May never reach many states if start in the same place
- Exploring starts ensure all states are visited infinitely often in order to guarantee convergence
- Sample episodes such that we start in every state infinitely often

Evaluating State-Action Pairs

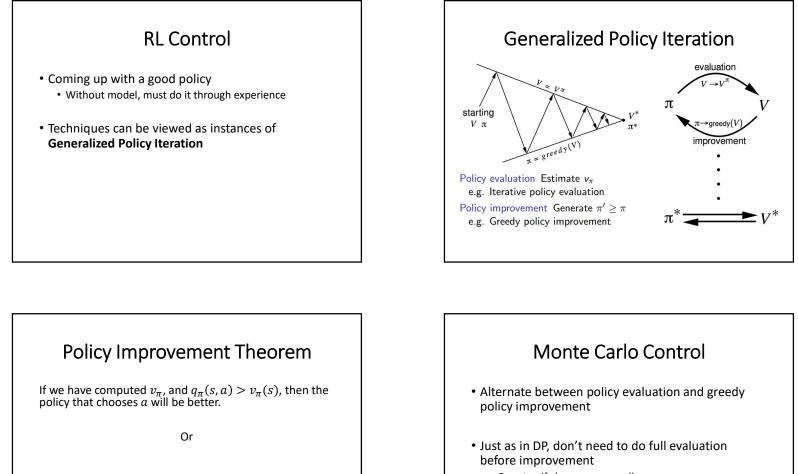
- Recall that in DP, could compute $q_{\pi}(s, a)$ using a lookahead of v_{π} to the possible transitions
 - Lookahead weighted by the probability of each outcome
 - Needed to know transition probabilities
- Now we don't have transition probabilities
 Often want q_π since we make decisions based on it
 - So we usually explicitly compute q_{π} instead of v_{π}

Evaluating State-Action Pairs

- Can modify first-visit and every-visit MC to update state-action pairs instead
 - Both converge if every pair is visited infinitely often
- Exploring starts for state-action pairs
 - Start with every state-action pair infinitely often

MC vs. DP

- In MC, only look at outcome that happened
 - Don't look at all outcomes like in DP
 - But means we require exploration
- Do not **bootstrap** in MC
 - DP updates v_{π} estimates based on other v_{π} estimates
 - MC only updates based on returns
- Time to update a state in MC does not depend on the number of states or even transitions
 No sweeping like in DP



 $\pi_{k+1} \ge \pi_k$

if and only if

$$\forall s, q_{\pi_k}(s, \pi_{k+1}(s)) \ge v_{\pi_k}(s)$$

• Or even just after each episode

Monte Carlo Control with ES

Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$: $Q(s, a) \leftarrow \text{arbitrary}$ $\pi(s) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow \text{empty list}$

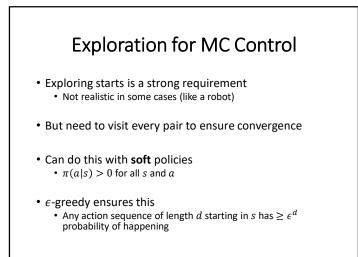
Repeat forever:

Choose $S_0 \in \mathbb{S}$ and $A_0 \in \mathcal{A}(S_0)$ s.t. all pairs have probability > 0 Generate an episode starting from S_0, A_0 , following π For each pair s, a appearing in the episode: $G \leftarrow$ return following the first occurrence of s, aAppend G to Returns(s, a) $Q(s, a) \leftarrow$ average(Returns(s, a)) For each s in the episode: $\pi(s) \leftarrow$ argmax_n Q(s, a)

- Exploring starts is a strong requirement
 Not realistic in some cases (like a robot)
- But need to visit every pair to ensure convergence
- Can do this with soft policies
 π(a|s) > 0 for all s and a

Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$:

• ϵ -greedy ensures this



MC Control with ϵ -Soft Policies

 $Q(s,a) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow empty list$ $\pi(a|s) \leftarrow$ an arbitrary ε -soft policy Repeat forever: (a) Generate an episode using π (b) For each pair s, a appearing in the episode: $G \leftarrow$ return following the first occurrence of s, aAppend G to Returns(s, a) $Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))$ (c) For each s in the episode: $A^* \leftarrow \arg \max_a Q(s, a)$ For all $a \in \mathcal{A}(s)$: $1 - \varepsilon + \varepsilon / |\mathcal{A}(s)|$ if $a = A^*$ $\pi(a|s) \leftarrow$ $\varepsilon / |\mathcal{A}(s)|$ if $a \neq A^*$

GPI and ϵ -Greedy Policies

- "Greedy" policy improvement, will now result in another ϵ -greedy policy
- Will now converge to the optimal ϵ -greedy policy
 - Like finding the optimal policy in a new domain where don't always get the action that you want

GPI and ϵ -Greedy Policies

- This control approach is an example of **on-policy** learning
 - Using the learnt policy to generate episodes
- Also have **off-policy learning** techniques
 - Use a **behaviour policy** to generate episodes
 - Learning the **target** policy

Off-Policy Learning

- Behaviour policy is exploratory, ensures that all state-action pairs are tried
- Target policy can be deterministic
 - Means convergence is possible to optimal policy
 - Not just optimal ϵ -soft policy

Off-Policy Learning

- Roughly learn less per episode
- Can only learn from parts of the episode where the behaviour and target policies coincide
 - Or at least, the degree that they are similar
- Can be slower, and harder to generalize

Why Use Off-Policy Learning?

- Can do massively parallel learning
 Learning about multiple policies at once
- Can learn multiple policies at once
- Can use episodes provided by a human
 Demonstrating good behaviour
- Learning from batch of episodes

Monte Carlo Recap

- RL is learning from experience • Trial and error
- Monte Carlo methods predict using what happened
 Based on episode results, does not bootstrap
- Need to ensure everything is trying often enough
- Monte Carlo control using GPI in a greedy way
 On-policy learns best ε-soft policy
 - Off-policy can learn best policy, but "learns less" per epsiode