# Bandit Algorithms and Monte Carlo Methods

Rick Valenzano and Sheila McIlraith

# Outline

- General assignment questions
- Recap of where we are
- Finish off bandits
  - UCB, incremental averaging, tracking
- Reinforcement Learning
- Monte Carlo methods
  - On-policy prediction and control

# Acknowledgements

- Images from the RL book
- Based on slides by David Silver and Adam White

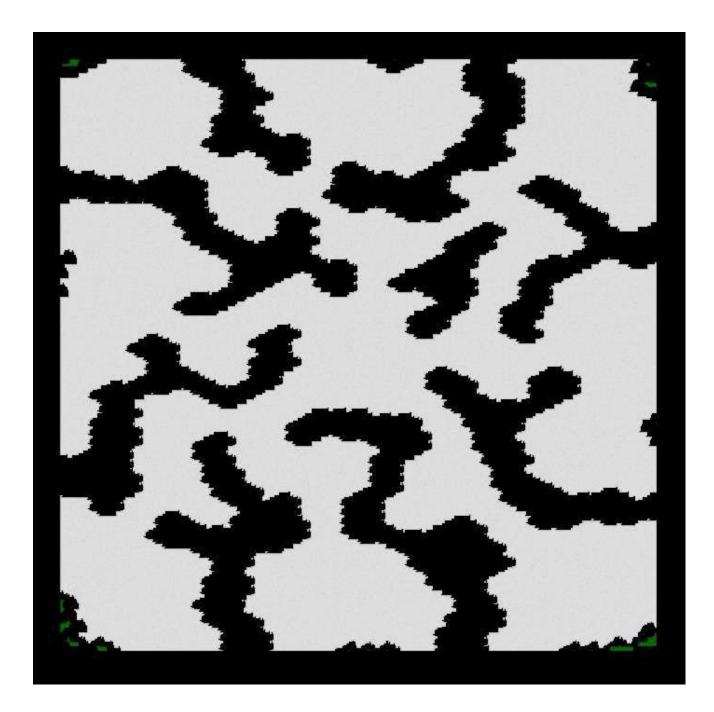
# Assignment

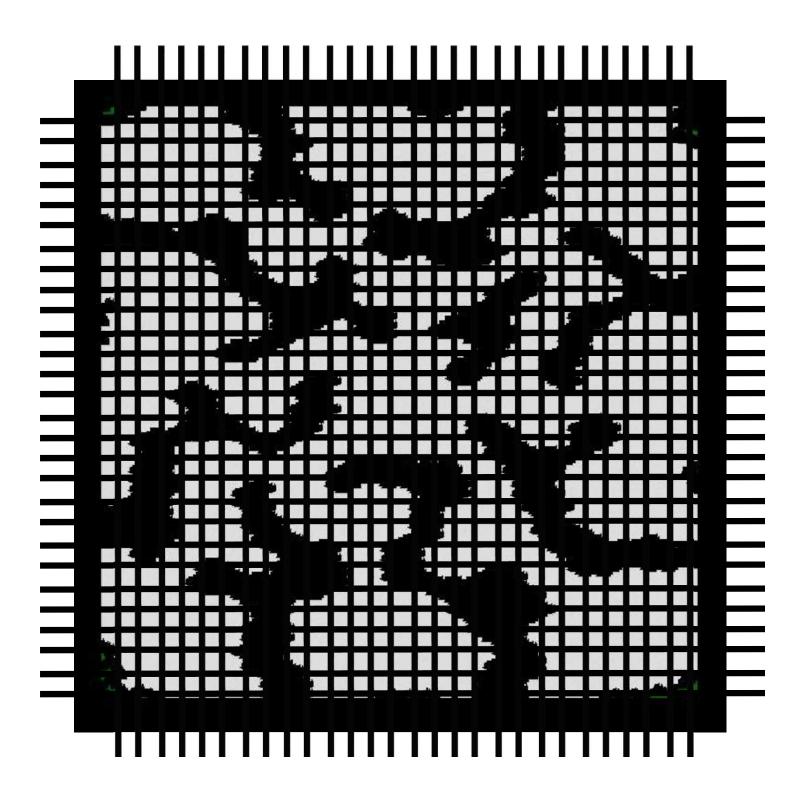
- Grace days
- Questions?

- Building system to achieve some objective
  - Through some extended interaction with the environment

• Try to model it, then pick an appropriate tool for that model

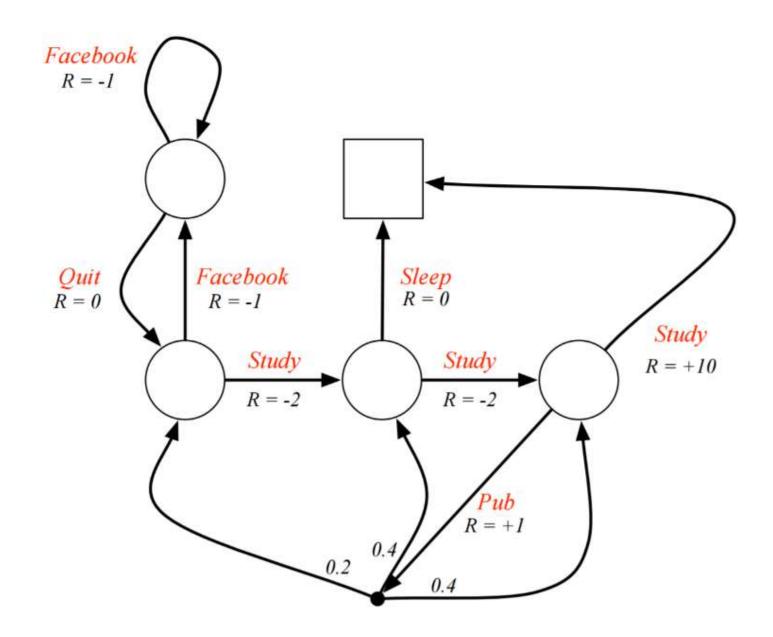
- Is the problem deterministic, fully observable, and with a possible finite transition function?
- Try modelling it as a classical planning problem
  - Model it in PDDL and try an off-the-shelf planner
  - Develop a problem specific heuristic, build a system





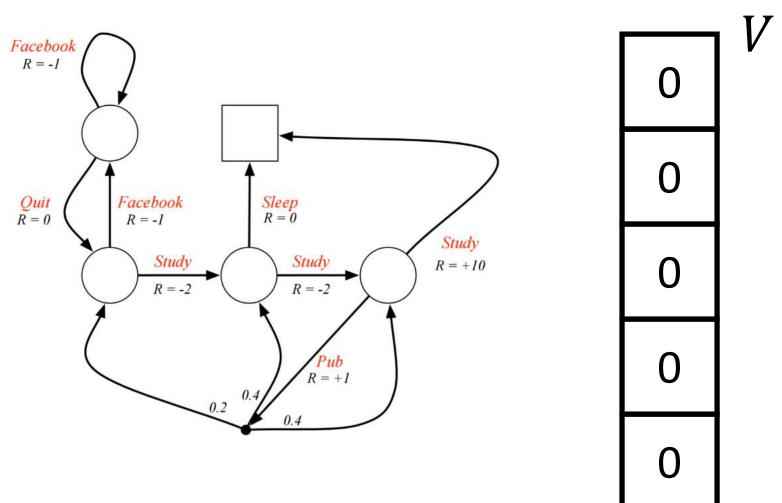
- Run A\*
- Too big for A\*? Time constraints?
  - Try suboptimal algorithms like WA\* or GBFS
  - Just need to figure out good settings for it

- Fully observable, with discrete and stochastic actions with known transition probabilities?
- Try modelling it as an MDP

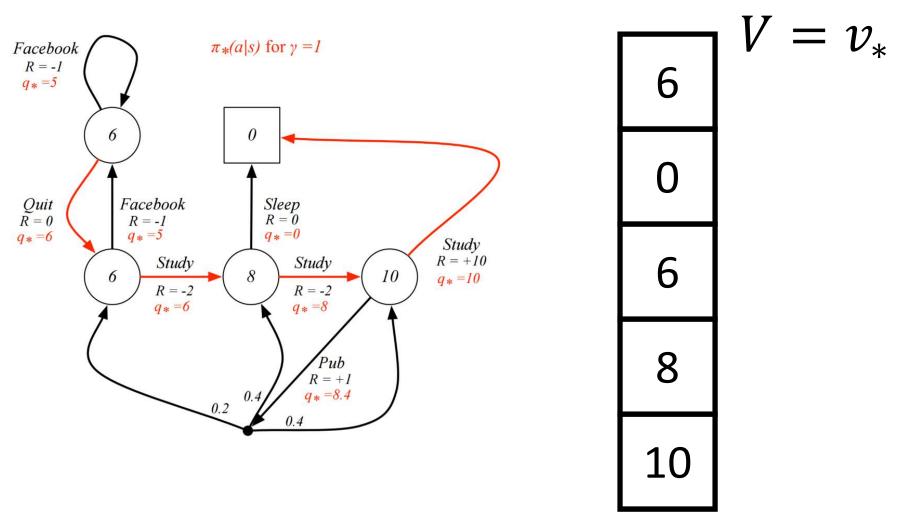


- Model it as an MDP
- Solve using value or policy iteration
- So far, we are assuming we can maintain state value functions in a table
  - Tabular Methods

#### Tabular Methods



#### Tabular Methods



- To use MDP methods, need a complete model
- But what if we don't know everything?
- What if we don't how reward function works?
  - Single state problem is an MDP
  - Finish this today

# Preview

- What if the underlying MDP has multiple states?
  - Next two lectures
- What if the state-space is too large?
  - Tabular methods aren't possible
  - Need approximation methods (next week)

#### **Multi-Armed Bandits**

- There are *n* actions  $A = \{a_1, \dots, a_n\}$
- All actions applicable on all of discrete time steps
  - Infinite time steps 1, 2, 3, ...
  - On each time step, pick one to execute. Denoted  $A_t$
- $q^*(s, a_i) = q^*(a_i) = E[R_t|a_i]$
- Agent is trying to maximize total reward over time

# **Greedy Policy**

- Let  $Q_t(a_i)$  be the average value of  $a_i$  after t steps
- On each step, choose the action with the best average return thus far

$$A_{t+1} = \operatorname{argmax}_{a \in A} Q_t(a)$$

• What are the issues with this approach?

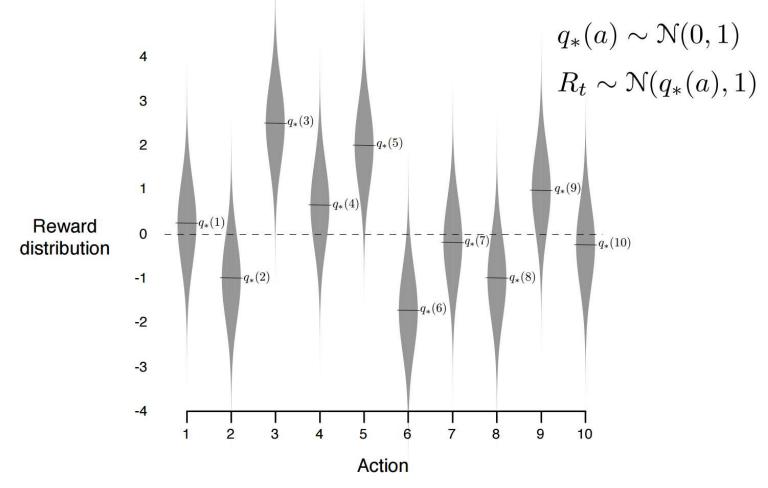
# *c*-Greedy Policy

- Don't always pick the best looking action
  - May not actually be the best

#### $\epsilon$ -greedy policy:

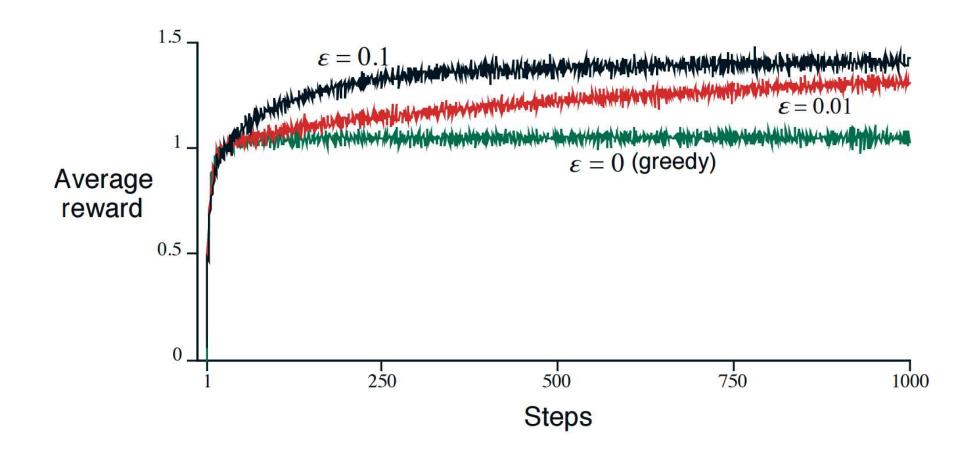
With probability  $(1 - \epsilon)$ :  $A_{t+1} = \operatorname{argmax}_{a \in A} Q_t(a)$ With probability  $\epsilon$ :  $A_{t+1}$  is selected randomly from A

#### **10-Armed Bandit Testbed**

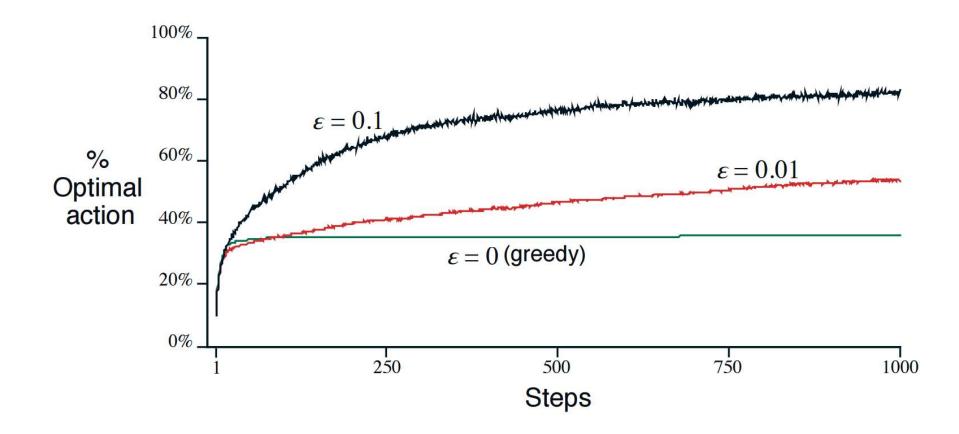


• Made 2,000 such problems

#### **10-Armed Bandit Results**



### **10-Armed Bandit Results**



# Exploration vs. Exploitation

- When select greedily, agent is **exploiting** its information
- When selects randomly, it is **exploring**
- If we exploit to much, can get stuck with suboptimal values
- If we explore too much, we may be sacrificing a lot of reward that we could have gotten
- Need to balance between the two
  - A central dilemma in reinforcement learning

### *c*-Greedy Policy

- Consider case where 10-arms and  $\epsilon = 0.1$ 
  - How often will it select best arm in the limit?

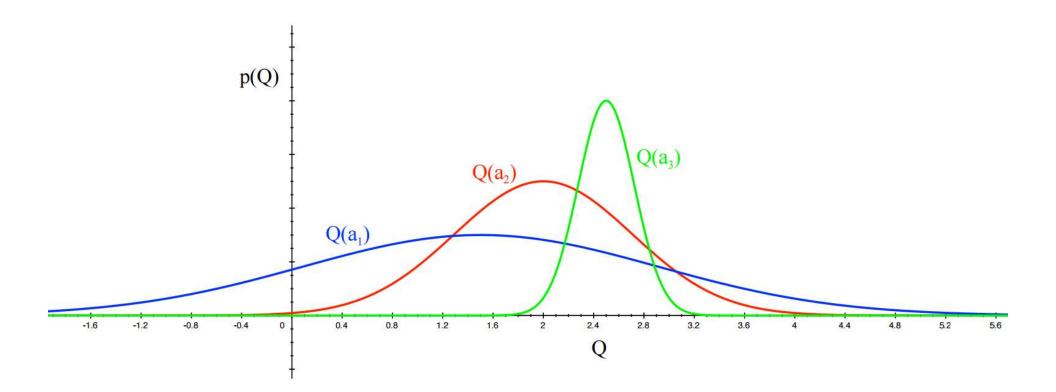
# *c*-Greedy Policy

- Consider case where 10-arms and  $\epsilon = 0.1$ 
  - How often will it select best arm in the limit?
  - With probability 0.91
- Can decrease  $\epsilon$  over time to converge to right value
  - Must satisfy certain conditions
  - Requires some knowledge about reward function
- Uniform exploration also seems odd

#### **Action-Values**



#### **Action-Value Uncertainty**



# Upper Confidence Bound (UCB)

Estimate a value  $U_t(a_i)$  for  $a_i$  such that

$$q^*(a_i) \le Q_t(a_i) + U_t(a_i)$$

with high probability.

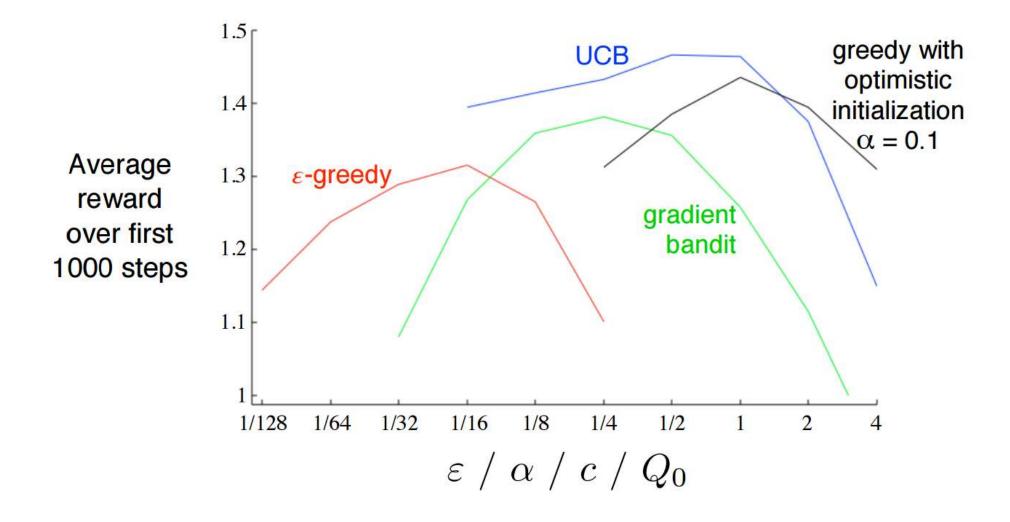
# UCB Algorithm

Estimate a value  $U_t(a_i)$  for  $a_i$  such that

$$A_t = \operatorname{argmax}_{a \in A} \left[ Q_t(a) + c \sqrt{\frac{\log t}{N_t(a)}} \right]$$

 $N_t(a)$  is the number of times a was selected c > 0 is a parameter that determines exploration

#### UCB vs. $\epsilon$ -Greedy (and others)



#### Calculating Average

Standard way to calculate average:

$$Q_t(a) = \frac{1}{N_t(a)} \cdot \sum_{i \in t(a)} R_i$$

In practice, keep track of  $N_t(a)$  and the sum

• Some floating point issues

#### Calculating Average

Standard way to calculate average:

$$Q_t(a) = \frac{1}{N_t(a)} \cdot \sum_{i \in t(a)} R_i$$

- Linear combination of  $R_t$  values
  - All rewards have same weight of  $1/N_t(a)$
  - Evidence at time t = 0 same as at t = 1,000,000

# Stationary vs. Non-Stationary

- Assumption that there is an underlying MDP
  - Transition function is not changing
  - Stationary problem
- But environments change over time
  - Non-stationary
  - Recent evidence is more important

#### Incremental Average

Incremental way to calculate average:

$$Q_{t+1}(a) = Q_t(a) + \frac{1}{N_t(a)} \cdot (R_{t+1} - q_t(a))$$

In practice, keep track of  $N_t(a)$  and  $q_t(a)$ 

- More robust for floating point arithmetic
- Flexible

# Tracking

Use parameter  $\alpha \in (0,1]$ 

$$Q_{t+1}(a) = Q_t(a) + \alpha \cdot (R_{t+1} - q_t(a))$$

If *a* is always picked, will look like the following:

$$Q_{t+1}(a) = (1 - \alpha)^t \cdot R_1 + (1 - \alpha)^{t-1} + \dots + \alpha \cdot R_{t+1}$$

Recent evidence is more important

# Tracking

Use parameter  $\alpha_t(a) \in (0,1]$ 

$$Q_{t+1}(a) = Q_t(a) + \alpha_t(a) \cdot (R_{t+1} - Q_t(a))$$

Incremental average uses

$$\alpha_t(\alpha) = \frac{1}{t}$$

#### Tracking

Use parameter  $\alpha_t(a) \in (0,1]$ 

$$Q_{t+1}(a) = Q_t(a) + \alpha_t(a) \cdot (R_{t+1} - Q_t(a))$$

If stationary, Q converge to the true  $q_*$  assuming  $\alpha_t(a)$  converges to 0 "quickly enough"

#### State-Value Updates

• Will often use updates of the following

NewEstimate =

LastEstimate + StepSize · (Target – LastEstimate)

- Target is what we want
  - Or an estimate (*i.e.* sample) of what we want

#### Bandit Recap

- Don't know the reward function
- Must balance exploit-explore balance
- $\epsilon$ -greedy, UCB as solution techniques
- Incremental average calculation
- Stationary vs non-stationary updates

## **Beyond Bandits**

- What if there are more than one state?
- What if we don't even know the transition function?
- For this class, we will at least assume we know the state-space

## **Reinforcement Learning**

- Learn from interacting with environment
  - Could be an actual environment (like a robot)
  - Or a partially specified model
- Take an action, get a reward, and new state
- Learning to map situations to actions (policy)
  - But without a full model
  - Still trying to maximize the reward

### **Reinforcement Learning**

- Learner (agent) not told how to act
  - No teacher, no labels on training examples
  - At least in "pure" form

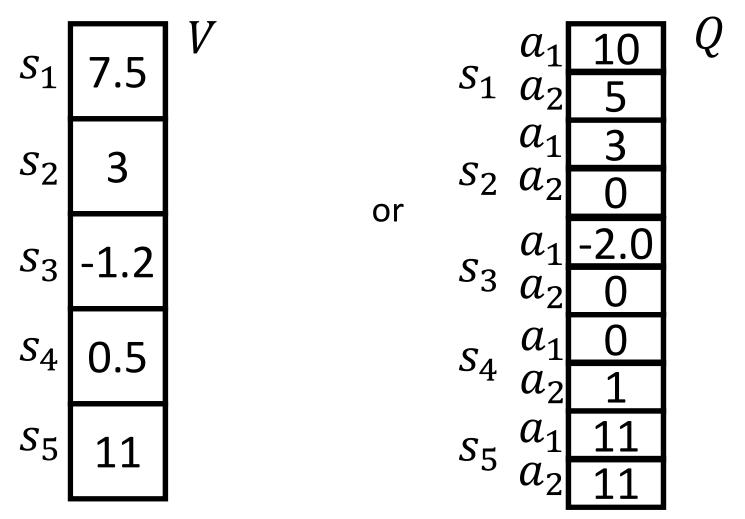
• "Trial and error" learning

#### RL Tabular Methods

- Let's assume we can enumerate all possible states
- Can figure out applicable actions in any state
  - Just don't know resulting reward, or even transition is
- Just as in DP, consider two problems:
  - **1. Prediction/Evaluation**: how well will a policy do?
  - 2. Control: find a good policy

#### Monte Carlo Methods

• Estimate value function using sample episodes



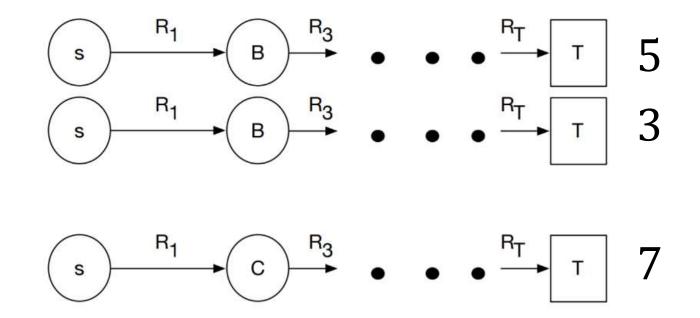
#### Monte Carlo Methods

- Estimate value function using sample episodes
- Suitable for **episodic tasks** 
  - No matter what actions we take, episode will terminate at some point (could take a long time though)
- Will update on an episode-by-episode basis
  - Not action-by-action

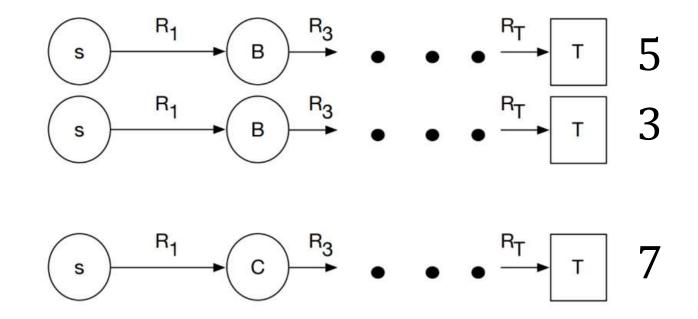
• Recall that  $G_t$  is the return we get during an episode after time t

$$v_{\pi}(s) = \mathbf{E}_{\pi}[G_t | S_t = s]$$

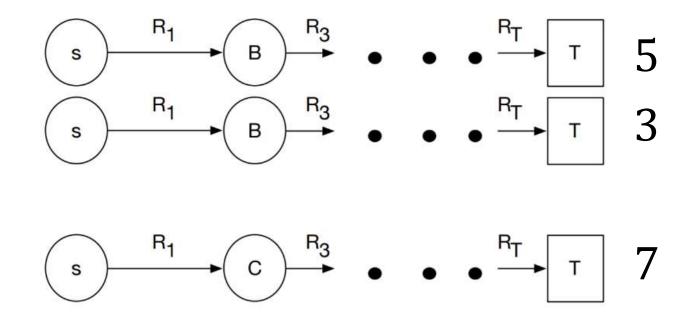
• To estimate  $v_{\pi}(s)$ , run episodes starting in s that use policy  $\pi$ , and average returns seen



• After three episodes, estimate is ...

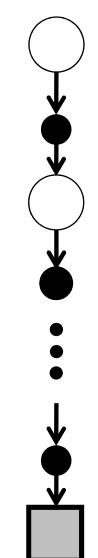


• After three episodes, estimate is ...  $V_{\pi}(s) = 5$ 



- Also have two episodes where B was visited
  - Can update those as well
  - Every episode allows for updates to every visited state

# Monte Carlo Backup



## First-Visit Monte Carlo Prediction

```
Initialize:
    \pi \leftarrow policy to be evaluated
    V \leftarrow an arbitrary state-value function
    Returns(s) \leftarrow an empty list, for all <math>s \in S
Repeat forever:
    Generate an episode using \pi
    For each state s appearing in the episode:
         G \leftarrow return following the first occurrence of s
         Append G to Returns(s)
         V(s) \leftarrow \operatorname{average}(Returns(s))
```

- First-visit only updates a state at most once per episode
  - Even if there is "loopy" behaviour
- Can also do every-visit where we update for all visits to the state
- Both techniques converge to  $v_{\pi}(s)$  for s if s is visited infinitely often in the limit
  - May need exploration to guarantee this

## Exploring Starts

- If  $\pi$  is deterministic, only try one action per state
  - May never reach many states if start in the same place
- **Exploring starts** ensure all states are visited infinitely often in order to guarantee convergence
- Sample episodes such that we start in every state infinitely often

## **Evaluating State-Action Pairs**

- Recall that in DP, could compute  $q_{\pi}(s, a)$  using a lookahead of  $v_{\pi}$  to the possible transitions
  - Lookahead weighted by the probability of each outcome
  - Needed to know transition probabilities
- Now we don't have transition probabilities
  - Often want  $q_{\pi}$  since we make decisions based on it
  - So we usually explicitly compute  $q_{\pi}$  instead of  $v_{\pi}$

### **Evaluating State-Action Pairs**

- Can modify first-visit and every-visit MC to update state-action pairs instead
  - Both converge if every pair is visited infinitely often
- Exploring starts for state-action pairs
  - Start with every state-action pair infinitely often

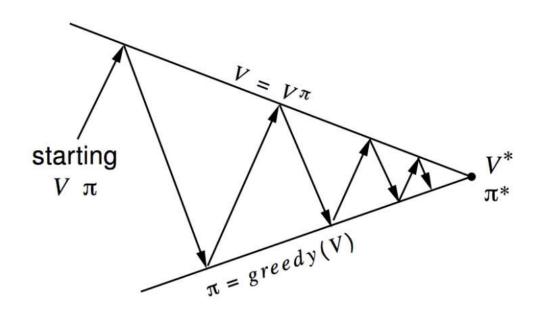
## MC vs. DP

- In MC, only look at outcome that happened
  - Don't look at all outcomes like in DP
  - But means we require exploration
- Do not **bootstrap** in MC
  - DP updates  $v_{\pi}$  estimates based on other  $v_{\pi}$  estimates
  - MC only updates based on returns
- Time to update a state in MC does not depend on the number of states or even transitions
  - No **sweeping** like in DP

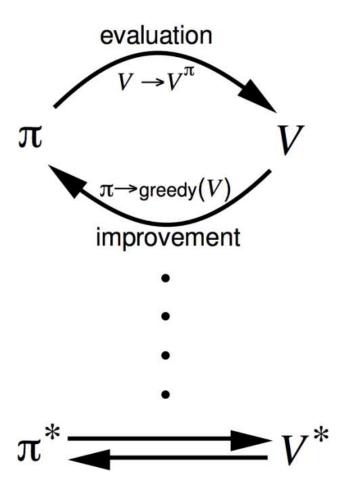
## **RL** Control

- Coming up with a good policy
  - Without model, must do it through experience
- Techniques can be viewed as instances of Generalized Policy Iteration

#### **Generalized Policy Iteration**



Policy evaluation Estimate  $v_{\pi}$ e.g. Iterative policy evaluation Policy improvement Generate  $\pi' \ge \pi$ e.g. Greedy policy improvement



#### Policy Improvement Theorem

If we have computed  $v_{\pi}$ , and  $q_{\pi}(s, a) > v_{\pi}(s)$ , then the policy that chooses a will be better.

Or

 $\pi_{k+1} \geq \pi_k$ 

if and only if

$$\forall s, q_{\pi_k}(s, \pi_{k+1}(s)) \ge v_{\pi_k}(s)$$

## Monte Carlo Control

- Alternate between policy evaluation and greedy policy improvement
- Just as in DP, don't need to do full evaluation before improvement
  - Can stop if changes are small
  - Or even just after each episode

## Monte Carlo Control with ES

```
Initialize, for all s \in S, a \in \mathcal{A}(s):
     Q(s, a) \leftarrow \text{arbitrary}
     \pi(s) \leftarrow \text{arbitrary}
     Returns(s, a) \leftarrow empty list
Repeat forever:
     Choose S_0 \in S and A_0 \in \mathcal{A}(S_0) s.t. all pairs have probability > 0
     Generate an episode starting from S_0, A_0, following \pi
     For each pair s, a appearing in the episode:
          G \leftarrow return following the first occurrence of s, a
          Append G to Returns(s, a)
          Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))
     For each s in the episode:
          \pi(s) \leftarrow \operatorname{argmax}_{a} Q(s, a)
```

## **Exploration for MC Control**

- Exploring starts is a strong requirement
  - Not realistic in some cases (like a robot)
- But need to visit every pair to ensure convergence
- Can do this with **soft** policies
  - $\pi(a|s) > 0$  for all s and a
- $\epsilon$ -greedy ensures this

## **Exploration for MC Control**

- Exploring starts is a strong requirement
  - Not realistic in some cases (like a robot)
- But need to visit every pair to ensure convergence
- Can do this with **soft** policies
  - $\pi(a|s) > 0$  for all s and a
- $\epsilon$ -greedy ensures this
  - Any action sequence of length d starting in s has  $\geq \epsilon^d$  probability of happening

# MC Control with $\epsilon$ -Soft Policies

```
Initialize, for all s \in S, a \in \mathcal{A}(s):
     Q(s,a) \leftarrow \text{arbitrary}
     Returns(s, a) \leftarrow empty list
     \pi(a|s) \leftarrow \text{an arbitrary } \varepsilon \text{-soft policy}
Repeat forever:
     (a) Generate an episode using \pi
     (b) For each pair s, a appearing in the episode:
               G \leftarrow return following the first occurrence of s, a
               Append G to Returns(s, a)
               Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))
     (c) For each s in the episode:
               A^* \leftarrow \arg \max_a Q(s, a)
               For all a \in \mathcal{A}(s):
                   \pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}
```

### GPI and $\epsilon$ -Greedy Policies

- "Greedy" policy improvement, will now result in another  $\epsilon$ -greedy policy
- Will now converge to the optimal  $\epsilon$ -greedy policy
  - Like finding the optimal policy in a new domain where don't always get the action that you want

## GPI and $\epsilon$ -Greedy Policies

- This control approach is an example of on-policy learning
  - Using the learnt policy to generate episodes
- Also have **off-policy learning** techniques
  - Use a **behaviour policy** to generate episodes
  - Learning the **target** policy

## **Off-Policy Learning**

• Behaviour policy is exploratory, ensures that all state-action pairs are tried

- Target policy can be deterministic
  - Means convergence is possible to optimal policy
  - Not just optimal  $\epsilon$ -soft policy

## **Off-Policy Learning**

- Roughly learn less per episode
- Can only learn from parts of the episode where the behaviour and target policies coincide
  - Or at least, the degree that they are similar
- Can be slower, and harder to generalize

## Why Use Off-Policy Learning?

- Can do massively parallel learning
  - Learning about multiple policies at once
- Can learn multiple policies at once
- Can use episodes provided by a human
  - Demonstrating good behaviour
- Learning from batch of episodes

## Monte Carlo Recap

- RL is learning from experience
  - Trial and error
- Monte Carlo methods predict using what happened
  - Based on episode results, does not bootstrap
- Need to ensure everything is trying often enough
- Monte Carlo control using GPI in a greedy way
  - On-policy learns best  $\epsilon$ -soft policy
  - Off-policy can learn best policy, but "learns less" per epsiode