Multi-Armed Bandits

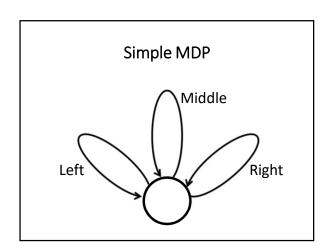
Rick Valenzano and Sheila McIlraith

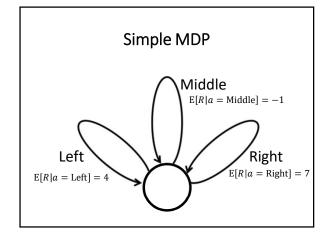
Outline

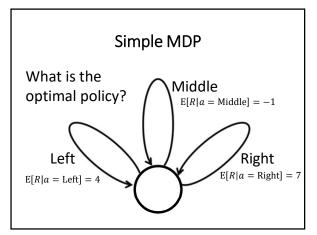
- Learning from experience
 - Exploration vs. exploitation
- Multi-armed bandits as a simple model
- Algorithms for bandit problems
- Stationary vs. non-stationary problems
 - Using incremental update rules

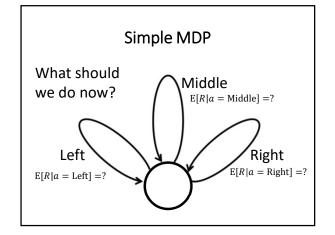
Acknowledgements

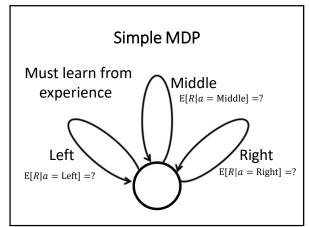
- Images from the RL book
- Based on slides by David Silver and Adam White











Simple MDP Demo

Simple MDP Demo

- Possible strategies?
- What information seems useful to keep track of?

Multi-Armed Bandits

- There are n actions $A = \{a_1, ..., a_n\}$
- All actions applicable on all of discrete time steps
 - Infinite time steps 1, 2, 3, ...
 - $\bullet\,$ On each time step, pick one to execute. Denoted A_t
- $q^*(s, a_i) = q^*(a_i) = \mathbb{E}[R_t|a_i]$
- Agent is trying to maximize total reward over time

Applications

- Youtube, ad, news recommendations
 - Or extension to "associative" bandits
- Parameter selection on a batch of problems
- Clinical trials or treatment

Greedy Policy

- ullet Let $q_t(a_i)$ be the average value of a_i after t steps
- On each step, choose the action with the best average return thus far

$$A_t = \operatorname{argmax}_{a \in A} q_t(a)$$

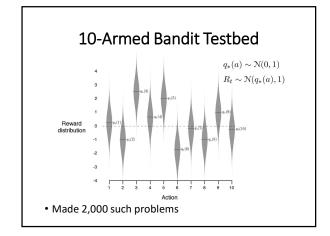
• What are the issues with this approach?

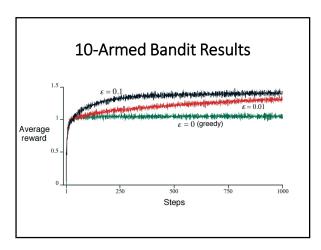
ϵ-Greedy Policy

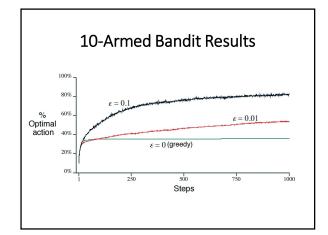
Don't always pick the best looking action
May not actually be the best

ϵ -greedy policy:

With probability $(1-\epsilon)$: $A_t = \operatorname{argmax}_{a \in A} q_t(a)$ With probability ϵ : $A_t \text{ is selected randomly from } A$







ϵ -Greedy Policy

- $ullet q_t(a_i)$ converges to $q^*(a_i)$ in the limit
- Needs to make exploratory actions for this to hold
- But exploratory actions may be "sacrificing" potential reward

Exploration vs. Exploitation

- When select greedily, agent is **exploiting** its information
- When selects randomly, it is **exploring**
- If we exploit to much, can get stuck with suboptimal values
- If we explore too much, we may be sacrificing a lot of reward that we could have gotten
- Need to balance between the two
 - A central dilemma in reinforcement learning