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Outline

• Learning from experience
• Exploration vs. exploitation

• Multi-armed bandits as a simple model

• Algorithms for bandit problems

• Stationary vs. non-stationary problems
• Using incremental update rules
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Simple MDP Demo



Simple MDP Demo

• Possible strategies?

• What information seems useful to keep track of?



Multi-Armed Bandits

• There are actions 

• All actions applicable on all of discrete time steps
• Infinite time steps 1, 2, 3, …
• On each time step, pick one to execute. Denoted 

•

• Agent is trying to maximize total reward over time



Applications

• Youtube, ad, news recommendations
• Or extension to “associative” bandits

• Parameter selection on a batch of problems

• Clinical trials or treatment



Greedy Policy

• Let be the average value of after steps

• On each step, choose the action with the best 
average return thus far

• What are the issues with this approach?



-Greedy Policy

• Don’t always pick the best looking action
• May not actually be the best

-greedy policy:
With probability 

With probability :
is selected randomly from 



10-Armed Bandit Testbed

• Made 2,000 such problems
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-Greedy Policy

• converges to in the limit

• Needs to make exploratory actions for this to hold

• But exploratory actions may be “sacrificing” 
potential reward



Exploration vs. Exploitation

• When select greedily, agent is exploiting its information

• When selects randomly, it is exploring

• If we exploit to much, can get stuck with suboptimal values

• If we explore too much, we may be sacrificing a lot of 
reward that we could have gotten

• Need to balance between the two
• A central dilemma in reinforcement learning


