Apprenticeship Learning via Inverse Reinforcement Learning

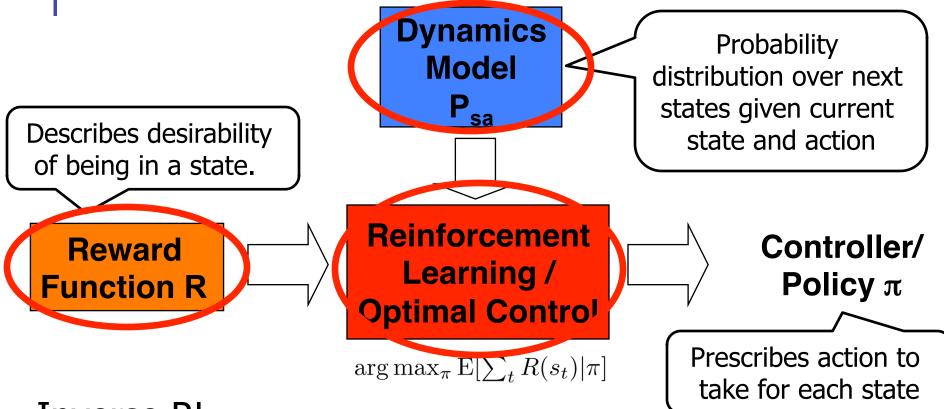
Pieter Abbeel and Andrew Ng

Presented by Kathy Ge

Example task: driving

×	Driving simulator				
	56 mph		Auto pilot		
		Auto-pilot			
			Manual		
		OffRoad Left	Middle	Right	OffRoad
		alpha: 0.00		accel: 0	.00
	+	0 40 60 100 2	ool		
		Center			
		 Quit			

Big picture and key challenges



Inverse RL

Can we recover R?

Overview

- Apprenticeship learning algorithms
 - Leverage expert demonstrations to learn to perform a desired task.
- Enabled us to solve highly challenging, previously unsolved, real-world control problems in
 - Quadruped locomotion
 - Simulated highway driving
 - Autonomous helicopter flight

Problem setup

- Input:
 - Dynamics model / Simulator $P_{sa}(s_{t+1} | s_t, a_t)$
 - No reward function
 - Teacher's demonstration: s₀, a₀, s₁, a₁, s₂, a₂, ...
 (= trace of the teacher's policy π*)

- Desired output:
 - Policy $\pi:S \to A$, which (ideally) has performance guarantees, i.e.,

$$\mathsf{E}[\frac{1}{T}\sum_{t} R^*(s_t)|\pi] \ge \mathsf{E}[\frac{1}{T}\sum_{t} R^*(s_t)|\pi^*] - \epsilon.$$

Note: R* is unknown.

Prior work: behavioral cloning

- Formulate as standard machine learning problem
 - Fix a policy class
 - E.g., support vector machine, neural network, decision tree, deep belief net, ...
 - Estimate a policy from the training examples (s₀, a₀), (s₁, a₁), (s₂, a₂), ...

E.g., Pomerleau, 1989; Sammut et al., 1992; Kuniyoshi et al., 1994; Demiris & Hayes, 1994; Amit & Mataric, 2002.

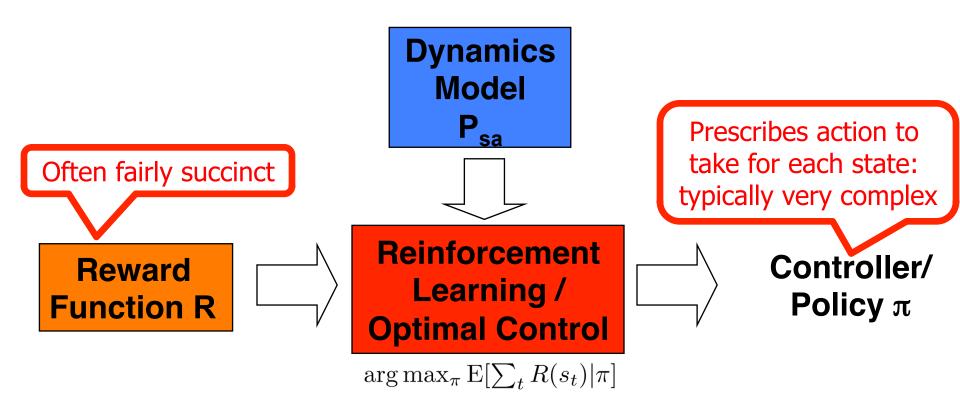
Prior work: behavioral cloning

X Driving simulator				
56 mph	Auto-pilot			
	Manual			
	OffRoad Left Middle Right OffRoad alpha: -0.42 accel: 0.00			
	0 40 60 100 200			
	Center			
	Quit			

Limitations:

- Fails to provide strong performance guarantees
- Underlying assumption: policy simplicity

Problem structure



E.g., $R^* = w_1^* 1\{"in \ right \ lane"\} + w_2^* 1\{"safe \ distance"\}$

Basic principle

- Find a reward function R* which explains the expert behaviour.
- Find R* such that

 $\operatorname{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R^{*}(s_{t}) | \pi^{*}\right] \geq \operatorname{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R^{*}(s_{t}) | \pi\right] \quad \forall \pi$

In fact a convex feasibility problem, but many challenges:

- R=0 is a solution, more generally: reward function ambiguity
- We typically only observe expert traces rather than the entire expert policy Π* --- how to compute LHS?
- Assumes the expert is indeed optimal --- otherwise infeasible

Feature based reward function

Let $R(s) = w^{\top} \phi(s)$, where $w \in \Re^n$, and $\phi: S \to \Re^n$.

Subbing into $E[\sum_{t=0}^{\infty} \gamma^{t} R^{*}(s_{t}) | \pi^{*}] \ge E[\sum_{t=0}^{\infty} \gamma^{t} R^{*}(s_{t}) | \pi] \quad \forall \pi$ gives us:

Find w^* such that $w^{*\top}\mu(\pi^*) \ge w^{*\top}\mu(\pi) \quad \forall \pi$

Feature based reward function

- Feature expectations can be readily estimated from sample trajectories.
- The number of expert demonstrations required scales with the number of features in the reward function.
- The number of expert demonstration required does *not* depend on
 - Complexity of the expert's optimal policy π^*
 - Size of the state space

Apprenticeship learning [Abbeel & Ng, 2004]

- Assume $R_w(s) = w^{\top} \phi(s)$ for a feature map $\phi : S \to \Re^n$.
- Initialize: pick some controller π_0 .
- Iterate for i = 1, 2, ... :

Guess" the reward function: _____

Learning through reward functions rather than directly learning policies.

Find a reward function such that the teacher maximally outperforms all previously found controllers.

 $\max_{\gamma,w:\|w\|_{2} \le 1} \gamma$ s.t. $\mathsf{E}[\sum_{t=0}^{T} R_{w}(s_{t})|\pi^{*}] \ge \mathsf{E}[\sum_{t=0}^{T} R_{w}(s_{t})|\pi] + \gamma \quad \forall \pi \in \{\pi_{0}, \pi_{1}, \dots, \pi_{i-1}\}$

- Find optimal control policy π_i for the current guess of the reward function R_w . There is no reward function for
- If $\gamma \leq arepsilon/2$ exit the algorithm.

There is no reward function for which the teacher significantly outperforms thus-far found policies.

Formalization

Standard max margin:

$$\begin{split} \min_w \|w\|_2^2 \\ \text{s.t.} \ w^\top \mu(\pi^*) \geq w^\top \mu(\pi) + 1 \quad \forall \pi \end{split}$$

Structured prediction max margin:

$$\begin{split} \min_{w} \|w\|_{2}^{2} \\ \text{s.t.} \ w^{\top} \mu^{(\pi^{*})} \geq w^{\top} \mu(\pi) + m(\pi^{*},\pi) \quad \forall \pi \end{split}$$

- Justification: margin should be larger for policies that are very different from π*.
- Example: m(π, π*) = number of states in which π* was observed and in which π and π* disagree

Formalization

Structured prediction max margin with slack variables:

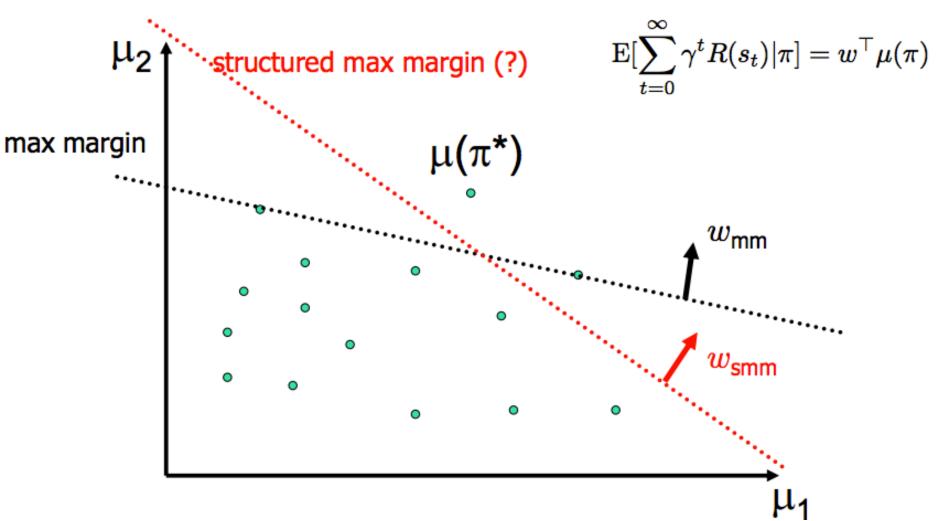
$$\begin{split} \min_{w} \|w\|_{2}^{2} + C\xi \\ \text{s.t.} \ \ w^{\top}\mu(\pi^{*}) \geq w^{\top}\mu(\pi) + m(\pi^{*},\pi) - \xi \quad \ \forall \pi \end{split}$$

 Can be generalized to multiple MDPs (could also be same MDP with different initial state)

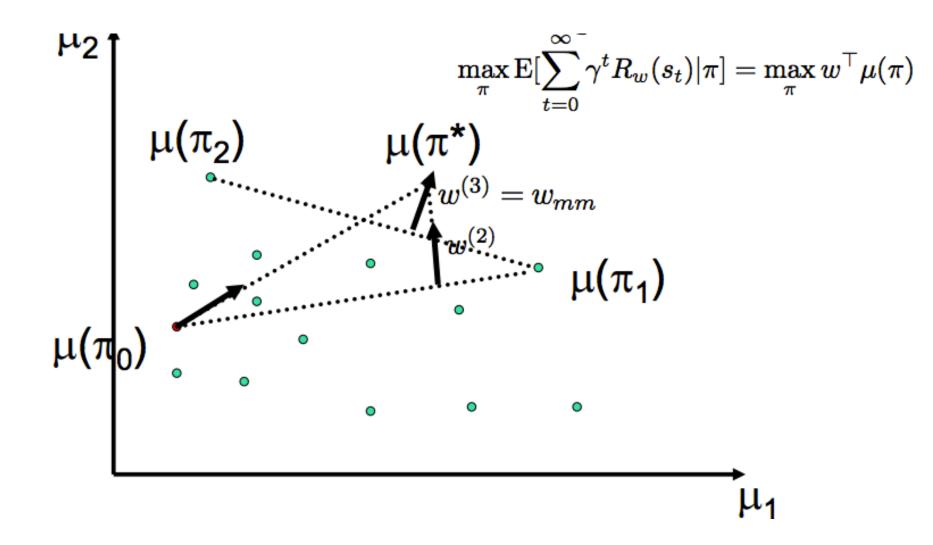
$$\begin{split} \min_{w} \|w\|_{2}^{2} + C \sum_{i} \xi^{(i)} \\ \text{s.t.} \ w^{\top} \mu(\pi^{(i)*}) \geq w^{\top} \mu(\pi^{(i)}) + m(\pi^{(i)*}, \pi^{(i)}) - \xi^{(i)} \quad \forall i, \pi^{(i)} \end{split}$$

Visualization in Feature Space

 Every policy π has a corresponding feature expectation vector μ(π), which for visualization purposes we assume to be 2D



Visualization in Feature Space



Highway driving

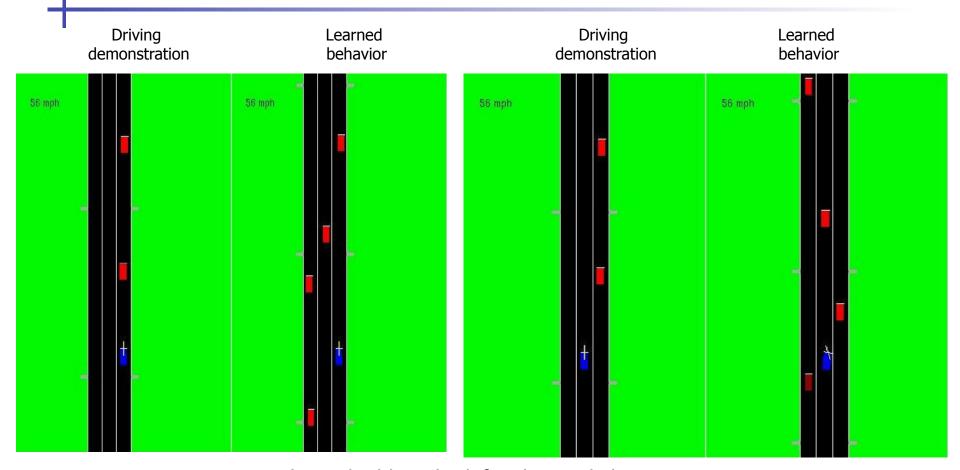
Teacher in Training World

X Driving simulator		X Driving simulator	
.56 mph	Auto-pilot Manual OffRoad Left Middle Right OffRoad alpha: 0.00 accel: 0.00 0 40 60 100 200 Center Quit	56 mph	Auto-pilot Manual OffRoad Left Middle Right OffRoad alpha: 0.01 accel: 0.00 0 40 60 100 200 Center Quit

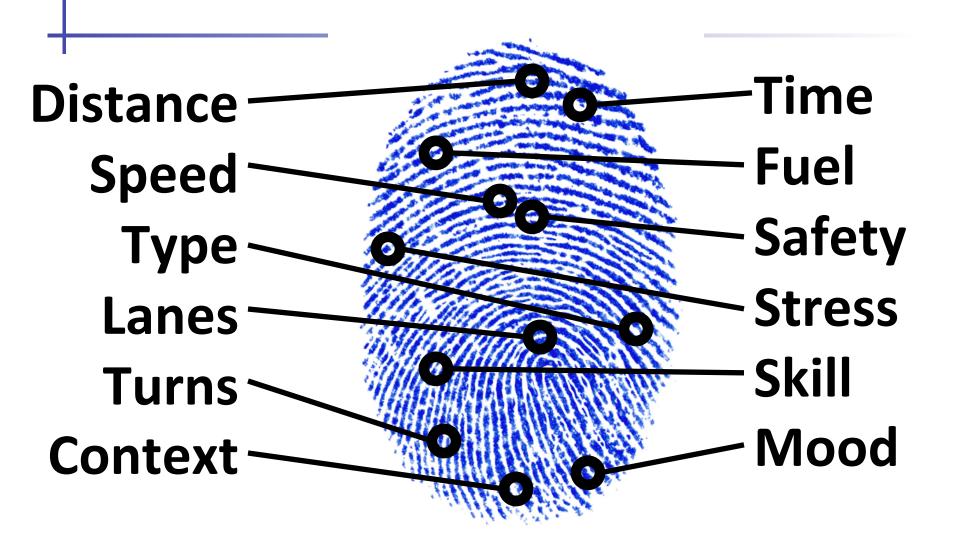
Learned Policy in Testing World

- Input:
 - Dynamics model / Simulator $P_{sa}(s_{t+1} | s_t, a_t)$
 - Teacher's demonstration: 1 minute in "training world"
 - Note: R* is unknown.
 - Reward features: 5 features corresponding to lanes/shoulders; 10 features corresponding to presence of other car in current lane at different distances

More driving examples

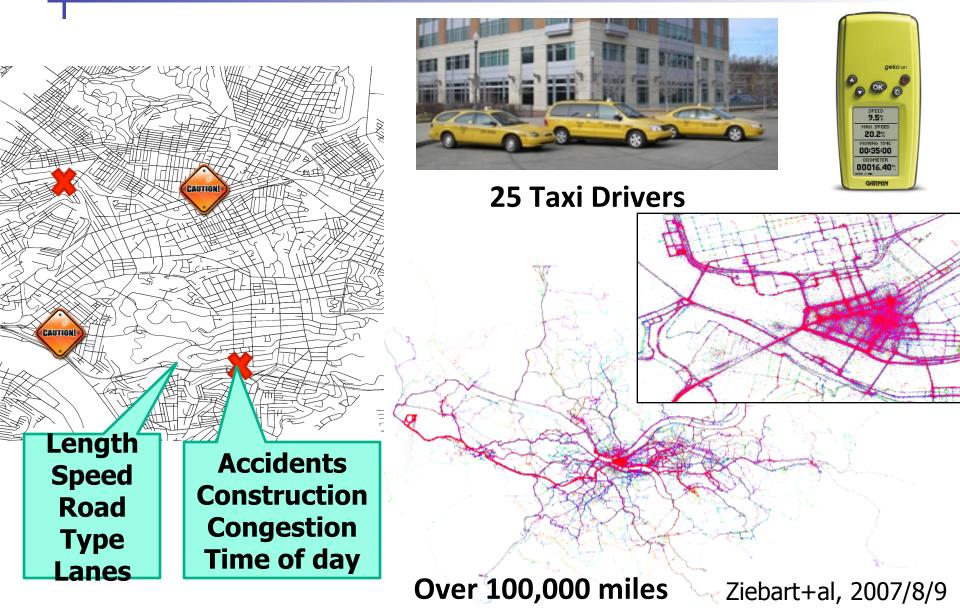


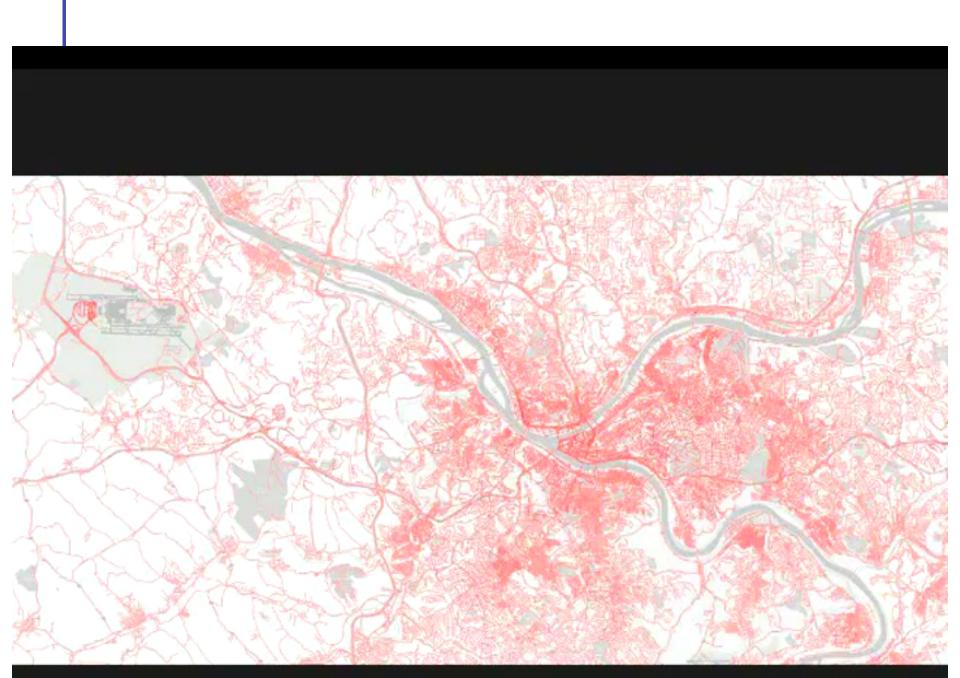
In each video, the left sub-panel shows a demonstration of a different driving "style", and the right sub-panel shows the behavior learned from watching the demonstration.



Ziebart+al, 2007/8/9

Data Collection





Parking lot navigation

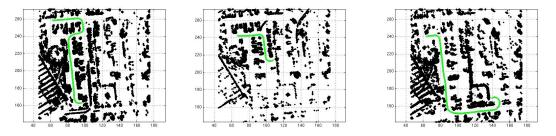
Reward function trades off:

- curvature
- smoothness,
- distance to obstacles,
- alignment with principal directions.

[Abbeel et al., submitted]

Experimental setup

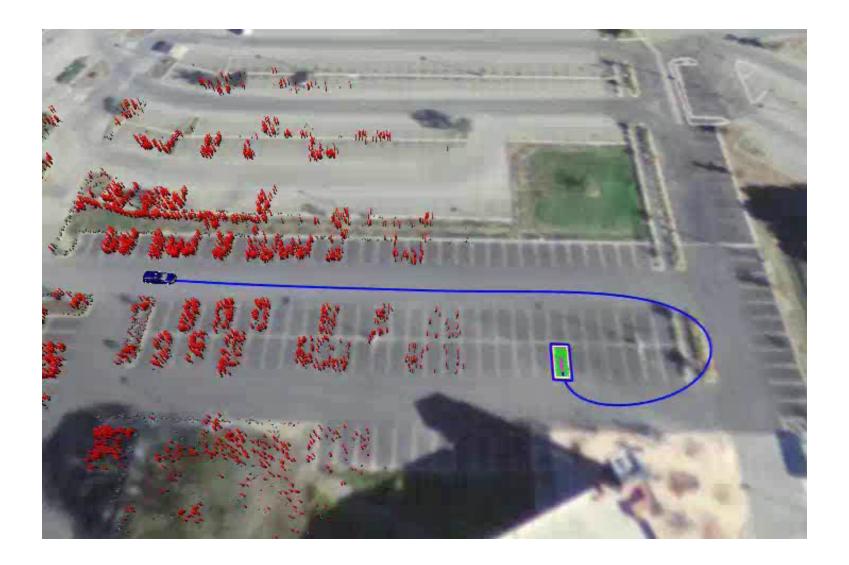
Demonstrate parking lot navigation on "train parking lot."



- Run our apprenticeship learning algorithm to find a set of reward weights w.
- Receive "test parking lot" map + starting point and destination.
- Find a policy $\pi \approx \arg \max_{\pi} E[\sum_{t} R_w(s_t) | \pi]$ for navigating the test parking lot.

Learned reward weights

Nice driving style



Sloppy driving-style

"Don't mind reverse" driving-style

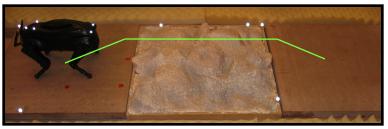
Quadruped

Reward function trades off 25 features.

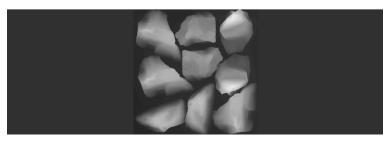
[Kolter, Abbeel & Ng, 2008]

Experimental setup

Demonstrate path across the "training terrain"



- Run our apprenticeship learning algorithm to find a set of reward weights w.
- Receive "testing terrain"---height map.



• Find a policy $\pi \approx \arg \max_{\pi} E[\sum_{t} R_w(s_t)|\pi]$ for crossing the testing terrain.

Learned reward weights

Challenging Terrain

Stairs

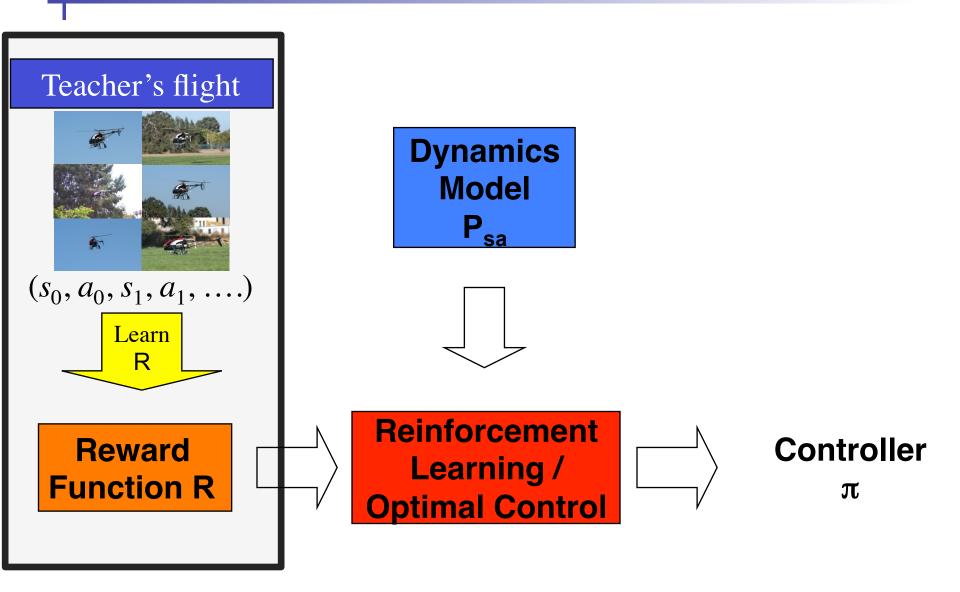
Teacher demonstration for quadruped

- Full teacher demonstration = sequence of footsteps.
- Much simpler to "teach hierarchically":
 - Specify a body path.
 - Specify best footstep in a small area.

Experimental setup

- Training:
 - Have quadruped walk straight across a fairly simple board with fixed-spaced foot placements.
 - Around each foot placement: label the best foot placement. (about 20 labels)
 - Label the best body-path for the training board.
- Use our *hierarchical* inverse RL algorithm to learn a reward function from the footstep and path labels.
- Test on hold-out terrains:
 - Plan a path across the test-board.

Apprenticeship learning



Flips

Nose-in funnel

Tail-in funnel

Thank you.