
PPT	provider:	Shane	(Seungwhan)Moon
PhD student,	Carnegie	MellonUniversity

How	it works



October	5	– 9, 2015

<Officialmatch>
-- Time	limit:	1 hour
-- AlphaGo	Wins (5:0)

AlphaGo vs EuropeanChampion (Fan Hui 2--Dan*)
rank



AlphaGo	vs	World	Champion	(Lee	Sedol9--Dan)

March	9	– 15, 2016

<Officialmatch>
-- Time	limit:	2 hours
- reward:	1	million	USD

Venue:	Seoul,	Four	Seasons Hotel

alphaGo Won
4:1



Lee	Sedol	9--dan		vs AlphaGo

Born	in	south	Korean	
12,	became	a	professional	player
20,	became	the	world	champion



Computer	Go AI?

DeepMind	in	London	
2010,	start
2014,	Google	
2015,	alphaGO



Computer	Go	AI	– Definition

s (state)

d	= 1

=

0	0	0	0	0	0	0	0 0
0	0	0	0	0	0	0	0 0
0	0	0	0	0	0	1	0 0
0	0	0	0	0	0	0	0 0
0	0	0	0	0	0	0	0 0
0	0	0	0	0	0	0	0 0
0	0	0	0	0	0	0	0 0
0	0	0	0	0	0	0	0 0

(e.g.	we	can	represent	the	board	into	a	matrix--likeform)

*	The	actual	model	uses	
other	features	than	board	
positions		as well,	(Extended	

table	4	in	paper)	
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Computer	Go	AI	– Definition

s (state)

d = 1 d	= 2

a (action)

Given	s,	pick	the	besta

Computer	Go		
Artificial		

Intelligence
s a s'



Computer	Go	AI	– An	ImplementationIdea?
d = 1 d	= 2

…

How	about	simulating	all	possible	boardpositions?b



Computer	Go	AI	– An	ImplementationIdea?
d = 1 d	= 2

…

d	= 3

…

…

…

…

… d	=maxD

Processthe simulation until the game ends,		
then	report	win	/	lose results



Computer	Go	AI	– An	ImplementationIdea?
d = 1 d	= 2

…

d	= 3

…

…

…

…

… d	=maxD

Processthe simulation until the game ends,		
then	report	win	/	lose results

e.g.	it	wins	13	times	if	the	next	stone	gets	placed here

37,839 times

431,320 times

Choose	the	“nextaction	/	stone”
that	has	the	most	win--counts	in	thefull--scale	simulation



This	is	NOT	possible;	it	is	said	the	possible		configurations		of	the	board	exceeds	the	number		of	atoms	in	the universe

b	~	250
d	~	150

5659799424266695229693199556804869862926581998836961
3684891343062096883241205281967122071574755988121587
2027456054864353492670804579578458515243255533277988
4338378906250000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000
0000000000000000000000000000



Key:	To	Reduce	Search Space !!!	

s (state)

d = 1 d	= 2

a (action)

Computer	Go		
Artificial		

Intelligence
s a s'



Reducing	Search Space

1.	Reducing	“action	candidates”	(BreadthReduction)

d = 1 d	= 2 d	= 3

…

…
…

… d	=maxD

Win?		
Loss?

…

IF there is a model that can tell you that thesemoves		
are not common / probable(e.g. byexperts, etc.) …

Removethese	from searchcandidatesin advance(breadth reduction)



Reducing	Search Space

2.	Position	evaluation	ahead	of	time	(DepthReduction)

d = 1 d	= 2

…

d	= 3

…

… d	=maxD

Win?		
Loss?

Instead	of	simulating	until	the	maximum	depth..



Reducing	Search Space

2.	Position	evaluation	ahead	of	time	(DepthReduction)

d = 1 d	= 2

…

d	= 3

…

V	= 1

V	= 2

V	= 10

IF	there	is	a	function	that	canmeasure:		
V(s):	“board	evaluation	of	state s”



Reducing	Search Space

1. Reducing	“action	candidates”	(BreadthReduction)

2. Position	evaluation	ahead	of	time	(DepthReduction)



1.	Reducing	“action candidates”

Learning:	P	(	next	action	|	current	state)

=	P	(	a	|	s )



1.	Reducing	“action candidates”

(1)	Imitating	expert	moves	(supervised learning)

CurrentState

Prediction		
Model

NextAction

s1 a1

s2 a2

s3 a3

Data:	Online	Go	experts	(5~9	dan)		(KGS)

160K	games,	30M	board positions



1.	Reducing	“action candidates”

(1)	Imitating	expert	moves	(supervised learning)

Prediction	Model

CurrentBoard NextAction

There	are	19	X	19	=	361		
possible actions
(with	different probabilities)



1.	Reducing	“action candidates”

(1)	Imitating	expert	moves	(supervised learning)

Prediction		
Model

s g:	s	àp(a|s) p(a|s) argmax a

CurrentBoard NextAction

0	0		0	0	0		0	0	0 0 0	0	0	0 0 0 0	0 0 0	0	0	0	0	0	0	0 0
0	0		0	0	0		1	0	0 0 0	0	0	0 0 0 0	0 0 0	0	0	0	0	0	0	0 0
0	--1			0	0	1	--1			1	0 0 0	0	0	0 0 0 0	0 0 0	0	0	0	0	0	0	0 0
0	1		0	0	1	--1			0	0 0 0	0	0	0	0	0.2	0.1	00 0	0	0	0	0	0	0	0 0
0	0		0	0	--1			0	0	0 0 0	0	0	0	0	0.4	0.2	0 0 0	0	0	0	0	1	0	0 0
0	0		0	0	0		0	0	0 0 0	0	0	0 0 0.1 0	0 0 0	0	0	0	0	0	0	0 0
0	--1			0	0	0		0	0	0 0 0	0	0	0 0 0 0	0 0 0	0	0	0	0	0	0	0 0
0	0		0	0	0		0	0	0 0 0	0	0	0 0 0 0	0 0 0	0	0	0	0	0	0	0 0



1.	Reducing	“action candidates”

(1)	Imitating	expert	moves	(supervised learning)

Prediction		
Model

s g:	s	àp(a|s) p(a|s) argmax a

CurrentBoard

0	0		0	0	0		0	0	0 0
0	0		0	0	0		1	0	0 0
0	--1			0	0	1	--1			1	0 0
0	1		0	0	1	--1			0	0 0
0	0		0	0	--1			0	0	0 0
0	0		0	0	0		0	0	0 0
0	--1			0	0	0		0	0	0 0
0	0		0	0	0		0	0	0 0

NextAction

0	0	0	0	0	0	0	0 0
0	0	0	0	0	0	0	0 0
0	0	0	0	0	0	0	0 0
0	0	0	0	0	0	0	0 0
0	0	0	0	0	1	0	0 0
0	0	0	0	0	0	0	0 0
0	0	0	0	0	0	0	0 0
0	0	0	0	0	0	0	0 0

Supervised	 Learning	Policy



Convolutional	Neural	Network (CNN)

Image source

CNN is a powerfulmodel for imagerecognition tasks; it	abstracts outthe input imagethrough convolution layers



Convolutional	Neural	Network (CNN)

And	they	use	this	CNN	model	(similar	architecture)	to	evaluate	the	board	position;	which	learns	“some”	spatial invariance

CurrentBoard NextAction



1.	Reducing	“action candidates”

(1)	Imitating	expert	moves	(supervised learning)

Expert	Moves	Imitator	Model		
(w/ CNN)

CurrentBoard NextAction

Training: ACC:	57%	50 GPUs,	3	week



AlphaGo



1.	Reducing	“action candidates”

Expert	Moves		
Imitator	Model		

(w/ CNN)

Expert	Moves		
Imitator	Model		

(w/ CNN)
VS

(2)	Improving	through	self--plays		(reinforcementlearning)			
Improvingbyplayingagainst itself

Goal	shift:

Imitation	->	winning	!!



1.	Reducing	“action candidates”

(2)	Improving	through	self--plays		(reinforcementlearning)

Expert	Moves	Imitator	Model		
(w/ CNN)

Board position win/loss

Training:

Loss
z	= --1

Win
z	= +1t



1.	Reducing	“action candidates”

Model	
ver 1.1

Updated	Model		
ver 1.3VS

It uses the same topology as the expert movesimitator model, and just uses the updated parameters

Return: boardpositions, win/lose info

(2)	Improving	through	self--plays		(reinforcementlearning)
Older	models	vs.	newermodels



1.	Reducing	“action candidates”

(2)	Improving	through	self--plays		(reinforcementlearning)

Model		
ver 1.5

Updated	Model		
ver 2.0VS

Return: boardpositions, win/lose info



1.	Reducing	“action candidates”

(2)	Improving	through	self--plays		(reinforcementlearning)

Most	Updated	
Model		VS

The	final	model	wins	80%	of	the time
when	playing	against	the	firstmodel

Expert	Moves		
ImitatorModel

Supervised	Learning	Policy	 Reinforcement	Learning	Policy	

50 GPUs,	1	day



AlphaGo



2.	Board Evaluation

Updated	Model		
ver 1,000,000

Board Position

Win		
(0~1)

Value		
Prediction		
Model		

(Regression)

Adds	a	regression	layer	to	themodel		
Predicts valuesbetween0~1
Close	to	1:	a	good	board	position		
Close	to	0:	a	bad	boardposition

Win	/ Loss



2.	Board Evaluation

Training:

Win/loss
(U+1)	State:	sStart

SL	Policy	Sampling RL	Policy	Sampling

30 Million	Positions Uniq Position	 for	each	game

Random	Once

U	-1	

50 GPUs,	one	week



AlphaGo



In-class	Question	
Q(2).	To	train	the	value	network,	a	set	of	distinct	positions,	 each	from	a	different	 game,	was	constructed.	The	
policy	network	 is	then	played	against	itself	from	that	position	 to	get	an	estimate	of	 the	value	of	that	state.	The	
learning	update	is	then	only	applied	to	the	initial	state	from	which	the	play	started,	as	no	updates	are	made	to	
states	in	the	rest	of	the	game.	Why	was	this?

d = 1 d	= 2 d	= 3

…

…
…

Over-represents

Highly	correlated	



Reducing	Search Space

1. Reducing “action candidates”		
(BreadthReduction)
Policy Network

Reinforcement	learning	policy	+	
(rollout	policy,	simple	model	to	
speed	up	the	sampling)

2. Board	Evaluation	(DepthReduction)
ValueNetwork



Looking	ahead	(w/	Monte	Carlo	SearchTree) +	
UCT

Action	CandidatesReduction		
(PolicyNetwork)

Board	Evaluation		
(ValueNetwork)

(Rollout):	Faster	version	of	estimatingp(a|s)
àuses	shallow	networks	(3	ms	à2µs)

UCT



In-class	Question	
Q(1).	For	AlphaGo,	 two	policies	are	learned	directly	from	expert	games,	one	using	a	deep	network,	and	the	other	a	
linear	approximator.	The	linear	approximator,	which	was	used	to	generate	moves	during	 the	playouts,	 is	much	
faster	to	compute	but	is	less	accurate	at	predicting	good	moves.	Explain	why	they	might	have	made	the	decision	to	
use	the	less	accurate	policy?	In	addition,	note	that	they	could	have	uniformly	 selected	moves	 from	all	possible	
moves,	which	would	have	been	even	faster	to	computer.	Discuss	what	this	suggests	about	how	we	should	develop	
policies	used	to	generate	playouts	in	Monte	Carlo	Tree	Search.

2	us	VS		3	ms



Results Elo	rating system

Performancewith differentcombinationsof AlphaGocomponents



Takeaways
Use	the	networks	trained	for	a	certain	task	(with	different	loss	objectives)	for	several	other		 tasks



Lee	Sedol	vs	AlphaGo		
Energy Consumption

Lee Sedol AlphaGo

-- Recommended	calories	for	a	man	per day
:	~2,500 cal

-- Assumption:		Lee	consumes	the	entire amount of	
per--day		calories	in	this	one game
2,500	cal	*	4.184 J/cal

~=	10k [J]

-- Assumption:		CPU:	~100	W,	GPU:	~300 W
-- 1,202	CPUs,	176 GPUs

170,000	J/sec	*	5	hr	*	3,600 sec/hr

~=	3,000M [J]

=	300 k	Lee	
A very, very roughcalculation ;)



AlphaGo	is	estimated	to	be	around~5--dan

=	multiple machines Europeanchampion



Taking	CPU	/	GPU	resources	to	virtually infinity?

But Google has promisednot to use more CPU/GPUs		
than theyused for FanHui forthe gamewith Lee

No	oneknows
how	it	will converge



AlphaGo	learns	millions	of	Go	games	everyday

AlphaGo will presumably convergeto somepointeventually.

However, in theNature paper they don’t report how AlphaGo’sperformanceimproves		
as	a	function	of	times	AlphaGo	plays	against	itself (self--plays).



First	Time	
Computer	can	defeat	professional	player	in	Go

Conclusion



Reference

• Silver,	David,	et	al.	"Mastering	the	game	of	Go	with	deep	neural		
networks	and	tree	search."	Nature	529.7587	(2016): 484--489.


