

PPT provider: Shane (Seungwhan) Moon PhD student, Carnegie Mellon University

AlphaGo vs European Champion (Fan Hui 2-Dan)

October 5 – 9, 2015

<Official match>

- Time limit: 1 hour
- AlphaGo Wins (5:0)

AlphaGo vs World Champion (Lee Sedol 9–Dan)

March 9 – 15, 2016

<Official match>

- Time limit: 2 hours
- reward: 1 million USD

Venue: Seoul, Four Seasons Hotel

alphaGo Won 4:1

Lee Sedol 9-dan vs AlphaGo

Born in south Korean 12, became a professional player 20, became the world champion

Computer Go AI?

DeepMind in London 2010, start 2014, Google 2015, alphaGO

Computer Go Al – Definition

d = 1

s (state)

(e.g. we can represent the board into a matrix-likeform)

* The actual model uses other features than board positions as well, (Extended table 4 in paper)

Extended Data Table 4 | Input features for rollout and tree policy

Feature	# of patterns	Description
Response	1	Whether move matches one or more response pattern features
Save atari	1	Move saves stone(s) from capture
Neighbour	8	Move is 8-connected to previous move
Nakade	8192	Move matches a nakade pattern at captured stone
Response pattern	32207	Move matches 12-point diamond pattern near previous move
Non-response pattern	69338	Move matches 3×3 pattern around move
Self-atari	1	Move allows stones to be captured
Last move distance	34	Manhattan distance to previous two moves
Non-response pattern	32207	Move matches 12-point diamond pattern centred around move

Computer Go Al – Definition

d = 1

d = 2

Given *s*, pick the best *a*

Computer Go AI – An Implementation Idea?

d = 1

•••

b

d = 2

How about simulating all possible board positions?

Computer Go AI – An Implementation Idea?

d = *maxD*

Process the simulation until the game ends, then report win / lose results

Computer Go AI – An Implementation Idea?

This is NOT possible; it is said the possible configurations of the board exceeds the number of atoms in the universe

250

~ 150

Key: To Reduce Search Space !!!

1. Reducing "action candidates" (Breadth Reduction)

Win? Loss?

d = maxD

IF there is a model that can tell you that these moves are not common / probable (e.g. by experts, etc.) ...

Remove these from search candidates in advance (breadth reduction)

2. Position evaluation ahead of time (Depth Reduction)

...

Instead of simulating until the maximum depth..

2. Position evaluation ahead of time (Depth Reduction)

IF there is a function that can measure: V(s): "board evaluation of state s"

1. Reducing "action candidates" (Breadth Reduction)

2. Position evaluation ahead of time (Depth Reduction)

Learning: P (next action | current state)

= P (a | s)

(1) Imitating expert moves (supervised learning)

Data: Online Go experts (5~9 dan) (KGS)

160K games, 30M board positions

(1) Imitating expert moves (supervised learning)

CurrentBoard

There are 19 X 19 = 361 possible actions (with different probabilities)

(1) Imitating expert moves (supervised learning)

(1) Imitating expert moves (supervised learning)

Convolutional Neural Network (CNN)

CNN is a powerful model for image recognition tasks; it abstracts out the input image through convolution layers

Convolutional Neural Network (CNN)

And they use this CNN model (similar architecture) to evaluate the board position; which learns "some" spatial invariance

(1) Imitating expert moves (supervised learning)

CurrentBoard

Next Action

ACC: 57%

50 GPUs, 3 week **Training:** $\Delta \sigma \propto \frac{\partial \log p_{\sigma}(a|s)}{\partial \sigma}$

AlphaGo

(2) Improving through self--plays (reinforcement learning)

Improving by playing against itself

VS

Expert Moves Imitator Model (w/ CNN) Expert Moves Imitator Model (w/ CNN)

Goal shift:

Imitation -> winning !!

t

(2) Improving through self--plays (reinforcement learning)

Board position

win/loss

z = +1

Training:
$$\Delta \rho \propto \frac{\partial \log p_{\rho}(a_t|s_t)}{\partial \rho} z_t$$

(2) Improving through self--plays (reinforcement learning)

It uses the same topology as the expert moves imitator model, and just uses the updated parameters

Return: board positions, win/lose info

(2) Improving through self--plays (reinforcement learning)

Return: board positions, win/lose info

(2) Improving through self--plays (reinforcement learning)

Supervised Learning Policy

Reinforcement Learning Policy

50 GPUs, 1 day

The final model wins 80% of the time when playing against the firstmodel

AlphaGo

2. Board Evaluation

Adds a regression layer to the model Predicts values between0~1 Close to 1: a good board position Close to 0: a bad board position

Win / Loss

Board Position

Updated Model ver 1,000,000

Value Prediction Model (Regression)

Win (0~1)

30 Million Positions

Uniq Position for each game

50 GPUs, one week **Training:**
$$\Delta\theta \propto \frac{\partial v_{\theta}(s)}{\partial \theta}(z - v_{\theta}(s))$$

AlphaGo

In-class Question

Q(2). To train the value network, a set of distinct positions, each from a different game, was constructed. The policy network is then played against itself from that position to get an estimate of the value of that state. The learning update is then only applied to the initial state from which the play started, as no updates are made to states in the rest of the game. Why was this? Highly correlated

1. Reducing "action candidates" (Breadth Reduction)

Policy Network

Reinforcement learning policy + (rollout policy, simple model to speed up the sampling)

2. Board Evaluation (Depth Reduction)

Value Network

Looking ahead (w/ Monte Carlo Search Tree) +

In-class Question

Q(1). For AlphaGo, two policies are learned directly from expert games, one using a deep network, and the other a linear approximator. The linear approximator, which was used to generate moves during the playouts, is much faster to compute but is less accurate at predicting good moves. Explain why they might have made the decision to use the less accurate policy? In addition, note that they could have uniformly selected moves from all possible moves, which would have been even faster to computer. Discuss what this suggests about how we should develop policies used to generate playouts in Monte Carlo Tree Search.

2 us VS 3 ms

Use the networks trained for a certain task (with different loss objectives) for several other tasks

Lee Sedol vs AlphaGo Energy Consumption

Lee Sedol	AlphaGo
 Recommended calories for a man per day : ~2,500 cal Assumption: Lee consumes the entire amount of perday calories in this one game 2,500 cal * 4.184 J/cal ~= 10k [J] 	 Assumption: CPU: ~100 W, GPU: ~300 W 1,202 CPUs, 176 GPUs 170,000 J/sec * 5 hr * 3,600 sec/hr ~= 3,000M [J]
	= 300 k Lee

A very, very rough calculation;)

AlphaGo is estimated to be around ~5-dan

Taking CPU / GPU resources to virtually infinity?

AlphaGo learns millions of Go games everyday

AlphaGo will presumably converge to some point eventually.

However, in the Nature paper they don't report how AlphaGo's performance improves as a function of times AlphaGo plays against itself (self--plays).

Conclusion

First Time Computer can defeat professional player in Go

Reference

• Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." *Nature* 529.7587 (2016): 484--489.