Richard E. Korf

Van Do

Nov 3rd, 2016

Outline

- Motivation: Single Agent Search

- Real-time Single Agent Search

A* and Iterative-Deepening-A*

- A*: BFS f(n) = g(n) + h(n)
- IDA*: DFS until f(n) > threshold
- Exponential time to run
- Search entire space before first move

Real-time single-agent search

Apply assumptions of two-player games:

- Limited search horizon
- Commitment to move in constant time

Real-time single-agent search

- 1. Make individual move decisions
- 2. Find a solution
- 3. Learn from solving multiple trials

1. Make individual move decisions

Individual move decisions – essentially equivalent

- Minimin with alpha pruning
- Time-limited-A*
- Threshold-limited-IDA*

Minimin

- Search from current state to a fixed depth
- Calcualte heuristic function to nodes at the search frontier
- Single move is made in direction of best child (minimum value)

Alpha Pruning

- Monotonic cost function (equiv. Consistent heuristics): $f(child) \ge f(parent)$
- Keep $\alpha = lowest f value$
- Terminate search if $f(new node) \ge \alpha$

Search horizon w/ alpha pruning increases with increasing branching factor

Time-limited-A*

- Run A* until time runs out
- Make a move in the direction of the best node on OPEN node
- Exponential memory requirement

Threshold-limited-IDA*

- Run IDA* with threshold $\geq f(current state)$
- Make a move in the direction of min h value.

Individual move decisions – essentially equivalent

- Minimin with alpha pruning
- Time-limited-A*
- Threshold-limited-IDA*

2. Find a solution from individual move decisions

Find a solution from individual move

Real-time-A* (RTA*):

- Completeness
- Correctness
- Solution quality

Real-time-A* (RTA*)

- BFS with

g(n) = distance from current state

- Make a move to node with min f value
- h(current state) = second best f value

Real-time-A* (RTA*) – Example

Start from a:

- f(b) = 1 + 1 = 2
- f(c) = 1 + 2 = 3
- f(d) = 1 + 3 = 4

Choose b

Update h(a) = 3 (f(c))

Real-time-A* (RTA*) - Example

From node b:

- f(e) = 1 + 4 = 5

$$- f(i) = 1 + 5 = 6$$

- f(a) = 1 + 3 = 4

Choose a

Update h(b) = 5 (f(e))

Real-time-A* (RTA*) - Example

From node a:

- f(b) = 1 + 5 = 6
- f(d) = 1 + 3 = 4
- f(c) = 1 + 2 = 3

Choose c

Update h(a) = 4 (f(d))

Real-time-A* (RTA*) – Example – Not stuck in an infinite loop

From node c:

- f(a) = 1 + 4 = 5
- f(k) = 1 + 7 = 8
- f(goal) = 1+6 = 7
 Goal found!
 Not in an infinite loop

Completeness of RTA*

Theorem 1:

RTA* will find a solution when:

- Finite problem space
- Positive edge cost
- Finite heuristic function
- Goal state is reachable from every state

Correctness of RTA* - locally optimal decisions

Theorem 2:

RTA* will move along a path with:

- Estimated cost of reaching a goal is a minimum
- Based on cumulative search frontier at the time

Tie-breaking for RTA*

- Arbitrary tie-breaking: systemic bias
- Random tie-breaking
- Secondary search to resolve tie-breaking

Solution quality increases with search horizon

Solution quality:
solution cost
Search horizon:
search depth

Computation vs. Execution

- Trade off between costs simulating vs.
 executing time
- Optimal search horizon is problem dependent

Learning from solving multiple

trials

Learning from solving multiple trials

Learning RTA*

Convergence

Learning RTA* (LRTA*)

Infinite trials of LRTA*, each similar to RTA* except: h(current state) = best f value
Store updated heuristics estimates of node from the previous run

Start from a:

- f(b) = 1 + 1 = 2
- f(c) = 1 + 1 = 2
- f(d) = 1 + 3 = 4

Break tie randomly. Choose b

Update h(a) = 2 (f(b))

From b:

- f(e) = 1 + 4 = 5
- f(i) = 1 + 3 = 4
- f(a) = 1 + 2 = 3

Choose a Update h(b) = 3 (f(a))

From a:

- f(b) = 1 + 3 = 4
- f(c) = 1 + 1 = 2
- f(d) = 1 + 3 = 4

Choose c

Update h(a) = 2 (f(c))

From c:

- f(a) = 1 + 2 = 3
- f(k) = 1 + 1 = 2
- f(goal) = 1 + 0 = 2

Goal found!

From a:

- f(b) = 1 + 3 = 4
- f(c) = 1 + 1 = 2
- f(d) = 1 + 3 = 4

Move to c.

Update h(a) = 2

From a:

- f(a) = 1 + 2 = 3
- f(k) = 1 + 1 = 2
- f(goal) = 1 + 0 = 2

Goal found!

LRTA*

- Retains completeness property of RTA*
- Not always make locally optimal decisions

Convergence of LRTA* after multiple trials

Theorem 3: heuristic values will converge to exact

values along every optimal path

- Non-overestimating initial heuristic values
- Infinite repeated trials of LRTA*
- Finite problem space, positive edge costs

Intuition for convergence of LRTA*

- Value of a node will be corrected after visited
 by LRTA* if values of its successors are correct
- Working backwards from goal and do sequential correction for predecessor nodes.

Conclusions:

- Minimin with Alpha pruning
- RTA*
- LRTA*