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Motivation
• Advances the state-of-the-art in finite-horizon MDP search 

based on Monte Carlo planning and heuristics
• Finite-horizon MDP: specialization of MDPs 

• Unifies existing techniques into a common framework
• Monte Carlo, heuristic search, dynamic programming 
• How can we talk about algorithms for this problem in a unified way?

• Focus on anytime-optimal algorithms
• Converge towards an optimal solution given enough time
• Give reasonably good results whenever they are stopped



Background
• Finite-horizon MDPs

• An MDP with an added parameter H (the horizon)
• At most H transitions between initial state and terminal states
• The horizon can be thought of as the agent’s lifespan
• Decision nodes where the agent makes a decision
• Chance nodes where the environment makes a “decision”

• Planning problem: maximize reward obtained in H steps
• We get a non-stationary policy
• Agent may act differently if it has 5 seconds to live versus 50 years



Rollout-Based Monte Carlo Planning
• Rollout-based Monte Carlo planning

• Run a number of episodes starting from the current state
• Episodes are generated by sampling actions in each state visited
• Take the best action observed across all episodes

• Simple approach: sample actions uniformly

• UCT: treat states as multi-armed bandits when sampling
• Use the UCB1 algorithm to solve the bandit problem

• UCB1: take the action that optimizes 𝑥"# +
% &'(
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THTS Framework
• Goal: Make algorithms 
fit into this framework

• Algorithms specify:
• heuristic function 
• backup function 
• action selection
• outcome selection
• trial length
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• Grid with rewards
• Assume H = 5
• Actions: move in four 

directions
• 50% chance of ending up 

where you wanted to go
• 25% change of going to one of 

the two neighbors
• E.g. Going up 
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Example
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Example
• Say it took the shown 

actions and ended up at O
• Reward is 2
• We need to push this 

information back up the tree



Example
• Use standard techniques again

• E.g. Monte Carlo backups – average over all previous trials
• In this example, the agent learns:

• The expected reward of going up in 
position (4,2) at time 5 is worth 2

• The expected reward of state (4,2) at 
time 5 is 2

• Right at (3,1) at time 4 is worth 2
• etc.
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THTS Framework
• Now we can describe this simple THTS algorithm:

• Heuristic: blind
• Backup: Monte Carlo
• Action selection: uniform random
• Outcome selection: Monte Carlo
• Trial length: until terminal is hit

• How do other algorithms vary?
• This framework makes it easy to describe algorithms that fit into it



UCT as a THTS
• UCT:

• Heuristic: any reasonable choice (even inadmissible)
• Backup: Monte Carlo
• Action selection: UCB1
• Outcome selection: Monte Carlo
• Trial length: until terminal is hit



Monte Carlo

Max Monte 
Carlo

Max-UCT
• Uses a different backup function called Max Monte Carlo
• Backup for decision nodes is based on the best child
• This is generally preferable



Max-UCT
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Max Monte
Carlo

Partial 
Bellman

DP-UCT
• Modify the backup function for chance nodes

• Partial Bellman
• A step towards the full Bellman approach used in dynamic 

programming
• Without having to explicate every possible outcome



DP-UCT
(1,1)

(1,1) U (1,1) D (1,1) L

(0,0)

(0,0) U (0,0) R

(0,1) (0,2)

(1,1) R

0.25

6
2

3

4

1 1

4

4

0.5

6

2 1



DP-UCT
(1,1)

(1,1) U (1,1) D (1,1) L

(0,0)

(0,0) U (0,0) R

(0,1) (0,2)

(1,1) R

0.25

6
2

3

4

1 1

5

5

0.5

6



UCT*
• We don’t want a complete policy, just the next decision

• Uncertainty grows with distance from the root node
• Therefore, things closer to the root are more important

• UCT, builds a tree skewed towards more promising parts 
of the solution space
• Because of the UCB1 action selection
• However, it does not consider depth as a deterrent

• DP-UCT + trial length change
• Trial ends when we expand a new node
• Encourages more exploration in shallower parts of the tree



Results
• IPCC 2011 benchmarks: 10 problems per domain
• Results averaged over 100 runs
• Heuristic used: inadmissible, same in all planners
• Compared against Prost (winner of IPCC 2011)



Results - Summary
Domain UCT Max-

UCT
DP-UCT UCT* Prost

ELEVATORS 0.93 0.97 0.97 0.97 0.93
SYSADMIN 0.66 0.71 0.65 1.00 0.82
RECON 0.99 0.88 0.89 0.88 0.99
GAME 0.88 0.90 0.89 0.98 0.93
TRAFFIC 0.84 0.86 0.87 0.99 0.93
CROSSING 0.85 0.96 0.96 0.98 0.82
SKILL 0.93 0.95 0.98 0.97 0.97
NAVIGATION 0.81 0.66 0.98 0.96 0.55
Total 0.86 0.86 0.9 0.97 0.87



Results – Anytime Performance

Graphic borrowed from Thomas Keller’s presentation at ICAPS 2013



Conclusion
• A uniform framework to describe this type of algorithm

• Must specify five elements

• Three novel algorithms:
• Max-UCT: better handling of highly destructive actions
• DP-UCT: benefits of dynamic programming without the expense
• UCT*: encourage more exploration close to the decision at hand


