CSC236 Tutorial Exercises, Mar 2/3
(Sample Solution)

1. A non-empty array A with integer entries has the property that no odd number occurs at a lower index than an even number. Consider the following algorithm for finding the highest index of an even element between indices b and e, inclusive, or $b-1$ if A has no elements that are even numbers.

 recHighestEven(A, b, e):

 if $b == e$:
 if $A[b] \% 2 == 0$: return b
 else: return $b - 1$
 else:
 $m = (b + e) // 2$ # midpoint
 if $A[m+1] \% 2 == 1$:
 return recHighestEven(A, b, m)
 else:
 return recHighestEven(A, $m+1$, e)

(a) State preconditions and postconditions for this algorithm.

Preconditions:
- A is non-empty with integer elements
- A has the property that no odd number occurs at a lower index than an even number
- $b, e \in \mathbb{N}$
- $0 \leq b \leq e < \text{length}(A)$

Postconditions: recHighestEven terminates and returns k such that
- $b - 1 \leq k \leq e$
- $\forall i, b \leq i \leq k$, $A[i]$ is even
- $\forall j, k < j \leq e$, $A[j]$ is odd

(b) Prove the algorithm is correct by showing that (preconditions) \rightarrow (termination \land postconditions).

Proof by induction:
Let $n = e - b + 1$.

Inductive Step: Let $n > 1$.

Assume $H(n): \forall i, 1 \leq i < n$, suppose the algorithm terminates and the postconditions hold after execution for all inputs of size i that satisfy the preconditions.

Show $H(n) \rightarrow C(n)$: the algorithm terminates and the postconditions hold after execution for all inputs of size n that satisfy the preconditions.
Consider a call to \texttt{recHighestEven}(A, b, e) with \(n \geq 2 \). The test \(b == e \) fails since \(b < e \), and so the next line executed is computation of \(m \).

Case: \(A[m+1] \) is odd

Here, the first recursive call \texttt{recHighestEven}(A, b, m) is made. Since \(b < e \) then \(m < e \), and \(m - b + 1 < e - b + 1 \). Thus, by \(H(n) \), this recursive call terminates and returns \(k \) that satisfies by the postconditions. That is,

(i) \(b - 1 \leq k \leq m \)
(ii) \(\forall i, b \leq i \leq k, A[i] \) is even
(iii) \(\forall j, k < j \leq m, A[j] \) is odd

Since the recursive call terminates and no other statements are executed, then the algorithm terminates in this case. It remains to be shown that the postconditions are satisfied.

- \(b - 1 \leq k \leq e \), by (i) and \(m < e \)
- \(\forall i, b \leq i \leq k, A[i] \) is even, by (ii)
- \(\forall j, k < j \leq e, A[j] \) is odd, by (iii), this case \((A[m+1] \) odd \), and the property of \(A \)

Case: \(A[m+1] \) is even

Here, the second recursive call \texttt{recHighestEven}(A, m+1, e) is made. Since \(b < e \) then \(m + 1 > b \), and \(e - (m + 1) + 1 < e - b + 1 \). Thus, by \(H(n) \), this recursive call terminates and returns \(k \) that satisfies by the postconditions. That is,

(i) \(m + 1 - 1 \leq k \leq e \)
(ii) \(\forall i, m + 1 \leq i \leq k, A[i] \) is even
(iii) \(\forall j, k < j \leq e, A[j] \) is odd

Since the recursive call terminates and no other statements are executed, then the algorithm terminates in this case. It remains to be shown that the postconditions are satisfied.

- \(b - 1 \leq k \leq e \), by (i) and \(m + 1 > b \)
- \(\forall i, b \leq i \leq k, A[i] \) is even, by (ii), this case \((A[m+1] \) is even \), and the property of \(A \)
- \(\forall j, k < j \leq e, A[j] \) is odd, by (iii)

So, \(H(n) \to C(n) \) for \(n > 1 \).

Base case: Let \(n = e - b + 1 = 1 \), and assume the preconditions are satisfied.

Then, the algorithm terminates, since there are no loops or recursive calls, and returns \(k \) such that

- \(b - 1 \leq k \leq e \), because either \(k = b - 1 \) or \(k = b = e \)
- \(\forall i, b \leq i \leq k, A[i] \) is even, because if \(b \) is returned, then \(A[b] \) is even
- \(\forall j, k < j \leq e, A[j] \) is odd, because if \(b - 1 \) is returned, then \(A[b] \) is odd

Conclusion: Thus, in all cases, \texttt{recHighestEven} is correct.