Outline

Correctness of Recursive Algorithms

Notes
Correctness

- How do we know that our algorithms are correct?

- What does it mean to say an algorithm is “correct”?
Correctness

Some definitions

- Preconditions

- Postconditions
Correctness

Some definitions

- Termination

- Partial correctness
Recursive Binary Search

def recBinSearch(x, A, b, e):
 if b == e:
 if x <= A[b]:
 return b
 else:
 return e + 1
 else:
 m = (b + e) // 2 # midpoint
 if x <= A[m]:
 return recBinSearch(x, A, b, m)
 else:
 return recBinSearch(x, A, m+1, e)
Preconditions and Postconditions for RecBinSearch
Precondition \Rightarrow Termination and Postcondition

Proof: induction on $n = e - b + 1$
Case 1: \(x \leq A[m] \)
Case 2: $x > A[m]$
Precondition ⇒ Termination and Postcondition

Proof: induction on $n = e - b + 1$
Recall MergeSort

MergeSort(A, b, e):
 if b == e: return
 m = (b + e) / 2
 MergeSort(A, b, m)
 MergeSort(A, m+1, e)
 # merge sorted A[b..m] and A[m+1..e] back into A[b..e]
 for i in [b,...,e]: B[i] = A[i]
 c = b
 d = m+1
 for i in [b,...,e]:
 if d > e or (c <= m and B[c] < B[d]):
 A[i] = B[c]
 c = c + 1
 else: # d <= e and (c > m or B[c] >= B[d])
 A[i] = B[d]
 d = d + 1
Preconditions and Postconditions for MergeSort
Prove Precondition \Rightarrow Termination and Postcondition
Prove Precondition \Rightarrow Termination and Postcondition
Algorithm for ClosestPointPairs

ClosestPairRec(P_x, P_y):
 if |P| <= 3:
 find closest points by brute force
 else:
 construct Q_x, Q_y, R_x, R_y
 (q_0,q_1) = ClosestPairRec(Q_x, Q_y)
 (r_0,r_1) = ClosestPairRec(R_x, R_y)
 \(\delta = \min(d(q_0,q_1), d(r_0,r_1)) \)
 (p_0,p_1) = point of (q_0,q_1), (r_0,r_1) with d = \(\delta \)
 L = average of rightmost x-coordinate in Q
 and leftmost x-coordinate in R
 construct S_x, S_y
 for each s ∈ S_y:
 compute distance to next 7 points in S_y
 and let (s_0,s_1) be closest pair found
 if d(p_0,p_1) < d(s_0,s_1): return (p_0,p_1)
 else: return (s_0,s_1)
Preconditions and Postconditions for ClosestPointPairs
Proof?