Outline

FSAs, formally

Formal Languages

Regular Expressions

Notes
Building an automaton with formalities...

A FSA is a quintuple: $(Q, \Sigma, q_0, F, \delta)$
Example: Multiple of 3 machine
Extended Transition Function

\[\delta^* : Q \times \Sigma^* \rightarrow Q \]

\[\delta^*(q, s) = \begin{cases}
q & \text{if } s = \varepsilon \\
\delta(\delta^*(q, s'), x) & \text{if } s' \in \Sigma^*, x \in \Sigma, s = s'x
\end{cases} \]
Extended Transition Function - example
Example: Even machine
Devise a machine that accepts strings over \(\{a, b\} \) with an even number of \(a \)'s

FSA to accept \(L = \{s \in \{a, b\}^*: s \text{ contains an even } \# \text{ of } a \text{’s}\} \)
Example: Even machine

Does $L(A) = L$? Proof by induction using state invariant
Example: Even machine
Does $L(A) = L$? Proof by induction using state invariant
Example: Even machine

Does $L(A) = L$? Proof by induction using state invariant
More odd/even: intersection

L is the language of binary strings with an even number of as, and at least one b

Devise a machine for L
More odd/even: union

L is the language of binary strings with an even number of as, or at least one b

Devise a machine that accepts L,
Back to languages
More language operations

Rev(L): $= \{ s^R : s \in L \}$

concatenation: LL' or $L \cdot L'$ = \{ rt | $r \in L$, $t \in L'$ \}.

Special cases $L\{\varepsilon\} = L = \{\varepsilon\}L$, $L\{\} = \{} = \{\}L$.
More language operations

exponentiation: L^k is concatenation of L k times. Special case, $L^0 = \{\epsilon\}$, including $L = \{\}$ (!)

Kleene star: $L^* = L^0 \cup L^1 \cup L^2 \cup \ldots$.
Another way to define languages
In addition to the language accepted by DFSA $L(M)$ and set description $L = \{\ldots\}$.

Definition: The regular expressions (regexps or REs) over alphabet Σ is the smallest set such that:

1. $\{\}, \epsilon$ are REs
2. a for every $a \in \Sigma$ are REs over Σ
3. if R and S are REs over Σ, then so are:
 - $R + S$ (union) — lowest precedence operator
 - RS (concatenation) — middle precedence operator
 - R^* (star) — highest precedence
Regular Expression to Language

- $L(\emptyset) = \emptyset$ (the empty language — no strings!)
- $L(\epsilon) = \{\epsilon\}$ (the language consisting of just the empty string)
- $L(x) = \{x\}$ (the language consisting of the one-symbol string)

- $L(S + T) = L(S) \cup L(T)$
- $L(ST) = L(S)L(T)$
- $L(T^*) = L(T)^*$
RE Examples

- \(L(a + b) = \{a, b\} \)

- \(L(ab) = \{ab\} \)

- \(L((a + b)a) = \{aa, ba\} = L(aa + ba) \)

- \(L(a^*) = \{\epsilon, a, aa, aaaa, \ldots\} \)

- \(L(aa^*) = \)

- \(L((ab)^*) = \)

- \(L(a^*b^*) = \)
RE Examples

- $L((a + b)^*) =$

- $L(a^* + b^*) =$

- $L((a + b)(a + b)^*) =$

- All strings of a’s and b’s that have the same first and last symbol?

- All strings of a’s and b’s that contain at least 1 a?