
CSC207 Lab 1 — Unix Shell and Git

To earn lab marks, you must arrive on time and actively participate for the entire session. Make sure that
your TA checks you off on the attendance sheet.

1 Overview

This week, you are going to work with Git using a UNIX command line shell. Before you start, look over
the Useful Unix and Git commands; you will be using them throughout the lab.

2 Choose a driver and navigator

In these labs, you are encouraged to work in pairs. You and your partner together will be able to figure out
problems better than you would individually. Find yourself a partner. If you have trouble finding one, let
your TA help you. This partnership is only for today’s lab, unless you want to continue it.

We strongly advise you to form a partnership with a classmate who has a similar level of background. For
example, if this is your first time working in a Linux environment, we suggest that you partner with someone
who is also new to Linux.

In all the labs, we will use the terms driver and navigator. Here are the definitions of the two roles:

• Driver: Types at the keyboard. Focuses on the immediate task at hand.

• Navigator: Thinks ahead and watches for mistakes.

In lab handouts, we’ll often refer to you as s1 and s2, and s1 will be the first driver.

Tip: If you are new to the computer science teaching labs, you should be s1 to get practice logging in while
s2 helps.

3 Log in and get things set up

s1 drives and s2 navigates.

You can’t both be logged in to the same machine at once, so let s1 be the person to log in. If necessary, s2
should offer assistance with this, but here is a very important rule for this and all other labs: Make sure
neither of you learns the other’s password while you work through this process!

Also, during this lab, s2 does not log in and does not check out a repository. Both of you work in s1’s
account on s1’s git repository. If you are s2 and wish to try this exercise in your own account, you can do
so after the lab.

After logging in, open a new terminal window.

You need to use some basic Unix commands in order to complete this lab. These commands are listed on
the second handout and the navigator should look them up.

1. Change to s1’s home directory. (You are probably already there — find out by typing pwd.)

2. Create a directory called lab1. (Using mkdir.)

1



3. Create two directories named local1 and local2 inside lab1. These two directories will be used later
for checking out local copies of s1’s repository.

At this point, the directory structure should be as follows (there may be other files and directories in s1’s
home directory that are not shown below):

4 Git (git Setup)

Git wants to know your preferred editor, since it will put you in that editor when the time comes to type
in a log message. Tell Git to use nedit as the editor. We will also tell git who s1 is. s2 should repeat this
step on their account later. issue the following commands, replacing the relevant information:

git config --global core.editor nedit

git config --global user.name "Your Name Here"

git config --global user.email your@email.here

Each of you has a git repository that we created for use in this lab.

For subsequent steps, you’ll need to know the URL for s1’s repository. It will have this form:

https://markus.teach.cs.toronto.edu/git/csc207-2017-05/s1username

Now you are ready to use Git.

1. Make the directory lab1/local1/ your current directory. Change your directory to lab1/local1/.
(Hint: use the cd command.)

2. Now, run git clone [URL] to get a local copy of the repository and also a working copy in the
s1username directory. s1’s teach.cs password will be required.

3. Before doing anything else, run git status. You should see this message:

fatal: Not a git repository (or any of the parent directories): .git

This is because you are currently in lab1/local1/, rather than in the repository you just cloned.

4. Change directory to that s1username directory. This is the top directory in your repository. Run git

status again. You should see this:

On branch master

Your branch is up-to-date with ’origin/master’.

nothing to commit, working tree clean

5. Using a text editor, create a file named myfile.txt, for example, by running

2



nedit myfile.txt

and saving the file. This will open a new window. Once you close it, the focus will switch
back to the terminal window.

6. Run git add myfile.txt and then run git status. Read the output and make sure you undersand
it.

7. Commit your changes by typing git commit, then run git status. (Later, you can use the -m flag
to specify the commit message, but try it without first.)

8. Continue editing myfile.txt: put the names of s1 and s2 (and anyone else you are working with)
one per line in the file. Commit the changes to the repository.

9. Run git status.

The directory structure should now be:

10. Remember that, in Git, commiting changes only affects the local repo. At this point, run a git push

command to propagate the changes to the remote repo.

5 A second local working copy, and a conflict

You are going to check out a second copy of the repository, create a conflict, and resolve that conflict.

1. Switch roles: s2 drives and s1 navigates.

2. Open another terminal window. (Note that you are still working within s1’s account.)

3. Change to the directory local2 and clone exactly as you did before.

Note: we are still in s1’s account, and we have two local copies of the repository. The local copies are
in sync.

3



The directory structure should now be:

4. Edit myfile.txt under local2 by adding s2’s favourite movie and favourite flavour of ice cream on
two new lines at the end of the file, but leave the group member names alone. Commit the changes to
your local repo, but do not push the changes to the remote repo!

Switch roles: s1 drives and s2 navigates.

5. pull to the working copy in local1. Since you just changed myfile.txt in local2 and committed the
new version to the repository, you should not see any changes in local1.

6. return to local2 and push the changes. Then return to local1, and pull again. The changes should
now be present.

7. Now, you will create a set of conflicting changes. To do so, edit myfile.txt again in local1, change
the ice cream flavour, and commit and push the changes.

8. Before pulling into local2, switch roles (s2 drives and s1 navigates) and have s2 change the
same line with the ice cream flavour in myfile.txt inside local2. Choose a different flavour, so that
there will be a conflict.

9. Try to commit the changes. This should succeed.

10. Now pull. This should succeed but result in a conflict.

Edit the file myfile.txt to remove the conflict. Afterward, commit the changes and then push the
result. This should succeed. You have now merged and resolved a conflict.

6 A Final Optional Challenge

1. Switch roles: s1 drives and s2 navigates.

2. In the terminal window containing local2, display the status of the files and directories in this local
copy. Use the status and diff commands to see where the local copy is out of date with the master
repository.

3. Look at the revision history of myfile.txt using the git log --follow -p -- myfile.txt com-
mand.

4. What needs to be done now to make sure local1 and local2 both contain the latest version of
myfile.txt? Complete the necessary steps.

4


