
Regular Expressions
CSC207 Winter 2018

Describing a set of
characters

• Eclipse describes the Java naming conventions for
variables this way:

^[a-z][a-zA-Z0-9]*$

• This is a regular expression (or regex)

• This describes a pattern that appears in a set of
strings. We say that any such string matches or
satisfies the regular expression.

^[a-z][a-zA-Z0-9]*$
• The ^ character means that the pattern must start at the

beginning of the string. This is called an anchor.

• Square brackets [] tell you to choose one of the characters
listed inside. In the leftmost set of brackets, we are given
all lowercase English letters to choose from. The second
character will come from the second set of square brackets.
It can be any lowercase letter, uppercase letter, or digit.

• The * means zero or more of whatever immediately
precedes it.

• The $ signifies the end of the string. This is another anchor.

^[a-z][a-zA-Z0-9]*$
continued…

• So our entire string must be made out of letters and numbers,
with the first character being a lower case letter.

• Here are some examples:

x, numStudents, obj1

• These do not satisfy the regular expression. (Why not?)

Alphabet, 2ab, next_value

• Do any of these strings match?

z3333, aBcB041, 78a

What if there are no
anchors?

Here is another regular expression:

[abc]C[a-e][24680]*[A-Z]

When this regex is applied to a string, it will find the
substrings that match.

• cCaA matches the entire expression

• ABCcCcCa1A23 contains substrings that match: cCcC
but not cCa1A

Other symbols
• Space characters:

• \s is a single space

• \t is a tab character

• \n is a new line character

• Inside square brackets, ^ has another meaning: it matches
any character except the contents of the square brackets.

• For example, [^aeiouAEIOU] matches anything that
isn’t a vowel.

Quantifiers
• * means zero or more, + means one or more, and ?

means zero or one.

• We append {2} to a pattern for exactly two copies of
the same pattern, {2,} for two or more copies of the
same pattern, and {2,4} for two, three, or four copies
of the same pattern.

Escaping a Symbol
• Sometimes we want symbols to show up in the String

that otherwise have meanings in regular expressions.
To “escape” the meaning of the symbol, we write a
backslash \ in front of it.

• A period . means any character. To have a period
show up in the string, we write \.

• Ex 1: abc123 matches the regex [a-e][a-e].+

• Ex 2: 1.4 matches the regex [0-9]\.[0-9]

Character Classes
• You can make your own character classes by using

square brackets like [q-z], [AEIOU], and [^1-3a-c],
or you can use a predefined class.

Repetition of a pattern vs. a
specific choice of character

• Here is a pattern that describes all phone numbers on
the same continent:

\(\d\d\d\) \d\d\d - \d\d\d\d

• We could also write this as

\(\d{3} \) \d{3} - \d{4}

• Here we want to repeat the pattern, but not
necessarily the digit. So (123) 456-7890 matches the
pattern.

Repetition of exact
characters

• To repeat the same character twice, we use groups
which are denoted by round brackets. Then we escape
the number of the group we want to repeat:

• The string 124124a124 matches the regular expression:

• (\d\d\d)\1a\1

• Groups are assigned the number of open brackets that
precede them.

• For example, ^(([ab])c)\2\1$ will repeat both groups.
The Strings that match are: acaac and bcbbc

Logical operators
• | means “or”

• && means the intersection of the range before the
ampersands and the range that appears after. For
example [a-t&&[r-z]] would only include the letters
r, s, and t.

• If A is true X, else Y is written as: (?(A)X|Y)

• “If the regex A appears in the string, the X must
follow; otherwise, if it doesn’t, then Y must appear.”

For an excellent quick
reference, take a look at:

http://www.rexegg.com/regex-quickstart.html

