
Design Patterns
CSC207 Winter 2017

Design Patterns

A design pattern is a general description of the solution to
a well-established problem using an arrangement of classes
and objects.

Patterns describe the shape of code rather than the details.

They’re a means of communicating design ideas.

They are not specific to any one programming language.

You’ll learn about lots of patterns in CSC301 (Introduction to
Software Engineering) and CSC302 (Engineering Large
Software Systems).

Gang of Four

First codified by the Gang of Four in 1995

- Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides

Original Gang of Four book described 23 patterns

- More have been added

- Other authors have written books

Book provides an overview of:

• Name
• Problem: when to use the pattern

• motivation: sample application scenario
• applicability: guidelines for when your code needs this pattern

• Solution:
• structure: UML Class Diagram of generic solution
• participants: description of the basic classes involved in generic

solution
• collaborations: describes the relationships and collaborations

among the generic solution participants

• sample code

• Consequences, Known Uses, Related Patterns, Anti-patterns

Iterator Design Pattern

Context

• A container/collection object.

Problem

• Want a way to iterate over the elements of the
container.

• Want to have multiple, independent iterators over the
elements of the container.

• Do not want to expose the underlying representation:
should not reveal how the elements are stored.

Iterator Design Pattern: Java

Observer Design Pattern

Problem:

• Need to maintain consistency between related objects.

• Two aspects, one dependent on the other.

• An object should be able to notify other objects without
making assumptions about who these objects are.

Observer: Standard Solution

Observer: Java Implementation

Observer: Example in Java

Uses of Observer in Java

In reality, people usually implement their own

• Usually can’t or don’t want to subclass from Observable

• Can’t have your own class hierarchy and multiple
inheritance is not available

• Has been replaced by the Java Delegation Event Model
(DEM)

• Passes event objects instead of update/notify

Listener is specific to GUI classes

Strategy Design Pattern

Problem:

• multiple classes that differ only in their behaviour (for
example, use different versions of an algorithm)

• but the various algorithms should not be implemented
within the class

• want the implementation of the class to be independent
of a particular implementation of an algorithm

• the algorithms could be used by other classes, in a
different context

• want to decouple — separate — the implementation of
the class from the implementations of the algorithms

Strategy: Standard Solution

Example: without the Strategy pattern

Example: using the Strategy pattern

Loose coupling, high
cohesion

These are two major goals of object-oriented design.

Coupling: the interdependencies between objects. The fewer
couplings the better, because that way we can test and modify each
piece independently.

Cohesion: how strongly related the parts are inside a class. High
cohesion means that a class does one job, and does it well. If a
class has low cohesion, then an object has parts that don’t relate to
each other.

Design patterns are often applied to decrease coupling and
increase cohesion.

Model-View-Controller
(MVC) Design Pattern

• Model: data, rules that govern access to the data, interactions
that update the data

• Often approximates a real-world process

• View: presentation of that data that is responsive to changes
in the model

• With a Push Model, the View receives change
notifications from the Model

• With a Pull Model, the View is responsible for calling
the model and retrieving the most current data.

• Controller: Interaction between User and View are translated
by the Controller into actions for the Model to perform.

• The controller can call different aspects of the View
(close one window and/or open another)

• Graphic User Interfaces (GUI) often comprise the View, where
the Controller is the non-visual front end (e.g., telling buttons
what to do when they are clicked), and the Model is the data
which the GUI displays and with which the User interacts via
the Controller.

MVC Pattern: General Structure

From:

https://www.tonymarston.net/php-mysql/model-view-controller-01.png

MVC: What’s happening inside?

MVC: A Solution in Java

Code for this example can be found here:

https://www.tutorialspoint.com/design_pattern/
mvc_pattern.htm

Dependency in Object Oriented
Programming

• A “dependency” relationship between two classes (also called
“using” relationship) means that any change to the second
class will change the functionality of the first.

• For example: class AddressBook depends on class
Contact because AddressBook contains instances of
Contact.

• Other examples of dependencies: loggers, handlers, listeners

Dependency Injection Design Pattern

Problem:

• We are writing a class, and we need to assign values to the
instance variables, but we don’t want to hard-code the types
of the values.

Dependencies in Java

• Using the new operator inside the first class can create an
instance of a second class that cannot be used nor tested
independently. This is called a “hard dependency”.

• We often want to use and test the second class independently
from the first and avoid hard dependencies. For example:

public class MyClass {
private Student student;

public MyClass(Student student){
this.student = student;

}
}

Dependency Injection Example

• Notice how the constructor for class Movies
takes an argument of type MovieFinder.

• Any change to the Movie class will affect the
MovieFinder, but not Movies directly.

• A dependency has been created between
Movie and MovieFinder.

Code for this example can be found here:

http://best-practice-software-
engineering.ifs.tuwien.ac.at/patterns/
dependency_injection.html

Dependency Injection Pattern Exercise

• Consider our previous example of class Person and its
subclass Student.

• Create a class called Email that contains instance variables of
type String called: to, from, cc, subject, and message. It
should also contain printToScreen() and
printToFile() methods.

• Class Person should have the ability to send an Email
object to another Person object. But that will require our
first instance of Person to obtain the second Person
object’s name or email address.

• Without Dependency Injection:

• The sender object will have to use reflection to gather
their own name/email address, and somehow obtain the
receiver object’s name/email address, etc.

• The code for creating and sending an email will have to
be inside class Person.

• Any change to the Email class will impact the code in
class Person.

• With Dependency Injection:

• We can create a class called EmailService that
gathers the information required to compose and send
Email objects.

• The constructor for EmailService can take in the
entire Person sender object and Person receiver
object and retrieve the values of their respective name
and email fields, in order to create a new instance of
Email.

• Any change to the Email class will be contained by
the EmailService and shielded from class Person.

Factory Design Pattern

Problem:

• A class cannot anticipate the class of the object it must
create.

• A class wants its subclasses to specify the object it
creates.

• Classes delegate responsibility to one of several helper
subclasses and you want to localize knowledge of which
helper subclass is the delegate.

When to use Factory Method Design
Pattern

• One class wants to interact with many
possible related objects.

• We want to obscure the creation process for
these related objects.

• At a later date, we might want to change the
types of the objects we are creating.

Factory Method: A Standard Solution

Factory Pattern: An example

Code for this example can be found here:

https://www.tutorialspoint.com/design_pattern/
factory_pattern.htm

We can easily create new subclasses of Shape
and use the ShapeFactory to instantiate them

without changing the rest of the code.

Factory Pattern: Another Example

For implementation of the Document Example,
see:

http://stg-tud.github.io/eise/WS15-SE-18-
Factory_Method_and_Abstract_Factory_Design_

Pattern.pdf

