
Class, Responsibility, Collaboration (CRC) Cards – Ticket Vendor Example

1. Specification:

Create a program that keeps track of ticket sales for an auditorium that has 32 rows of
seats with a varied number of seats in each row. Each ticket is associated with a seat (row
letter and seat number such as A12), a price (low ∼ $10, medium ∼ $30, or high ∼ $50),
whether or not the seat is for sale or complementary (for example, sold to the public or
given to friends of a performer), name of occupant (who bought the ticket), their e-mail
address, and the date, time, and name of the performance so that tickets for each seat can
be sold to different people at different times.

It should be possible to get a list of names of all people who bought tickets for a par-
ticular date. For a given performance, it should also be possible to print a grid of x’s and o’s
where an x represents a seat that is occupied (that is, it’s associated ticket has been sold)
and an o represents seats for which no ticket has yet been sold.

Anyone who buys a high-priced ticket automatically joins the Gold Members Club which
is an e-mail list. It should be possible to generate an e-mail list of all people in the Gold
Members Club, and to delete someone from that e-mail list upon request.

A ticket holder should be able to create and access an account that stores the seats, dates,
and names of performances attached to all of the tickets which they have purchased.

2. Classes:

This is where major design decisions are made. Can we store all of the information in
the UserAccounts?

No, because we do not want to accidentally sell the same seat to the same show to two
different people. So information about each show should be stored separately from the user
accounts.

Could we have a ShowManager which keeps instances of class Show in which we store in-
formation associated with each seat and ticket?

Alternatively, could we let seats be entries in a collection or multi-dimensional array that
exists within the Show class, generating tickets for each by accessing a TicketManager?

There are many good designs that can fulfill this specification. When creating CRC cards,
you need to choose one design, work with it, and adjust it as problems arise.

1

3. Responsibilities

More than one class needs access to the seat number and row number of a given ticket.
Where should we store that information?

For the purposes of this handout, we decide to have a Ticket class. But where do we
instantiate Ticket? In the TicketManager and pass it to the UserAccount, or should we
instantiate the ticket class in the UserAccount and pass that information to the Show and
its associated TicketManager?

Likewise, should we store the e-mail list in the TicketVendorSystem, or create a method
that generates that list whenever we need it? If the latter, how do we store the information
about whether or not a user is on that list?

4. Collaborations

Collaborators can be classes that are adjacent on the inheritance hierarchy (that is, one
is the parent of the other), or instantiate one inside the other, or one gets passed as an
argument into a method in the other.

Collaboration is symmetric. So, if class A collaborates with class B, then class B collabo-
rates with class A. For example, the TicketManager will collaborate with Ticket objects
(through instantiation), so the TicketManager collaborates with class Ticket (through cre-
ating and storing instances of Ticket).

On the next page is one possible set of CRC cards that describes one piece of software
that fulfills the given specification. Class names are at the top of each card. The respon-
sibilities (variables and methods) of that class are written on the left, while collaborating
classes are listed on the right.

2

3

Warm-Up Questions:

1. According to the CRC cards, where is the user’s name stored?

2. How does the system generate a list of users names for a given show?

3. How does the system generate the map of seats with x’s and o’s showing which seats
are available? Can you think of another way to accomplish this?

Questions About The Current Design:

4. In which class does execution start?

5. Where does class Show get instantiated?

6. Where are instances of class Ticket stored?

7. How does a UserAccount get information about available seats for a particular show?

8. How does a user buy a ticket (represented by a Ticket)?

9. Once a Ticket is generated, where does it go? How many classes have direct or in-
direct access to the information contained in that Ticket?

10. Should UserAccount collaborate with class Show? Why or why not?

Questions About Changing the Design:

11. Do we need a separate class for Show or can we reorganize the ShowManager so we
no longer need instances of Show? If so, should we?

12. How can we change the design so that the same TicketVendorSystem sells tickets
to multiple venues (different rooms with different numbers of rows and columns of seats)?

4

