
Exceptions
CSC207 Summer 2018

What are exceptions?

In Java, an exception is an object.

Exceptions represent exceptional conditions: unusual, strange,
disturbing. These conditions deserve exceptional treatment: not
the usual go-to-the-next-step, plod-onwards approach.

Exceptions have a different model of program execution.

When an exception might occur while your method is running, you
have two choices:

1. Write a catch block for each kind of exception that might happen,
and code to deal with the exceptional situation.

2. Let your method crash (!) and force the method that called yours
to deal with it.

The Java exception type hierarchy
Throwabl

e

Erro
r Exception

RuntimeException

OutOfMemoryError

IOException

ArithmeticException
ClassCastException

AssertionError

. .
.

. .
.

. .
.

Exceptions in Java

To throw an exception:
throw Throwable;

To catch an exception and deal with it:
try {

 statements

// The catch belongs to the try (like else and if)

} catch (ExceptionType1 parameter) {

statements

} catch (ExceptionType2 parameter) {

statements

} …

finally { // This is optional

}

Throwable

Constructors:

Throwable(), Throwable(String message)

Other useful methods you can use once you catch an exception:

getMessage()

printStackTrace()

getStackTrace()

What should you throw?

You can throw an instance of Throwable or any subclass of it
(whether an already defined subclass, or a subclass you define).

Don’t throw an instance of Error or any subclass of it: these are for
unrecoverable circumstances (for example, OutOfMemoryError).

Don’t throw an instance of Exception: throw something more
specific.

It’s okay to throw instances of:

• specific subclasses of Exception that are already defined (for
example, UnsupportedOperationException)

• specific subclasses of Exception that you define.

Things you do not need to handle

Error:

“Indicates serious problems that a reasonable application
should not try to catch.”

Do not have to handle these errors because they “are abnormal
conditions that should never occur.”

RuntimeException:

These are called unchecked because you do not have to handle
them.

Defining your own exception

You will sometimes want to define your own exception class.

• You get to choose a meaningful name so that it fits in the
problem domain.

• You get to decide where in the exception hierarchy it belongs.

• You get to decide how it fits into your regular code.

Reminder: the Java exception hierarchy
Throwabl

e

Erro
r Exception

RuntimeException

OutOfMemoryError

IOException

ArithmeticException
ClassCastException

AssertionError

. .
.

. .
.

. .
.

Checked vs. Unchecked Exceptions

When defining an Exception subclass, you need to decide whether to extend
RunTimeException (unchecked) or Exception (checked).

public class MyException extends Exception {...}

class MyClass {

 public void m() throws MyException { ...

 if (something bad happens) {

 throw new MyException(“oops!”);

 }

 }

}

public class MyException extends RuntimeException {…}

class MyClass {

 public void m() /* No “throws", but it compiles! */ {

 if (something bad happens) {

 throw new MyException(“oops!”);

 }

 }

}

RuntimeException vs.
non-RuntimeException?

Java API: “The class Exception and its subclasses are a form of
Throwable that indicates conditions that a reasonable application
might want to catch.”

• RunTimeException (unchecked):

“RuntimeException is the superclass of those exceptions that can
be thrown during the normal operation of the Java Virtual Machine.”

Examples: ArithmeticException, IndexOutOfBoundsException,
NoSuchElementException, NullPointerException

• non-RuntimeException (checked):

Examples: IOException, NoSuchMethodException

Guideline for which to use

"Use checked exceptions for conditions from which the caller can
reasonably be expected to recover."

"Avoid unnecessary use of checked exceptions."
If the user didn’t use the API properly or if there is nothing to be done, then
make it a RunTimeException.

"Use run-time exceptions to indicate programming errors. The
great majority of run-time exceptions indicate precondition
violations."
Example: Suppose method getItem(int i) returns an item at a particular
index in a collection and requires that i be in some valid range.

The programmer can check that before they call o.getItem(x).

So sending an invalid index should not cause a checked exception to be
thrown.

Another guideline for which to use

Your exception will often be thrown by code you write.
Programmers calling your methods need to be aware of this.

If an exceptional situation is predictable by a programmer using
your code (they can write an if statement to check, or otherwise
ensure they’re avoiding the exceptional situation), make the
exception a RuntimeException subclass.

If an exceptional situation is not predictable by a programmer using
your code, make the exception a plain Exception subclass.

We can have cascading catches

Much like an if with a series of else if clauses, a try can have a
series of catch clauses.

After the last catch clause, you can have a finally clause:

finally { ... }

But finally is not like a last else on an if statement:
The finally clause is always executed, whether an exception was
thrown or not, and whether or not the thrown exception was
caught.

Example of a good use for this: close open files as a clean-up step.

An example of multiple catches

Suppose ExSup is the parent of ExSubA and ExSubB.
try {

 ...

} catch (ExSubA e) {

 // We do this if an ExSubA is thrown.

} catch (ExSup e) {

 // We do this if any ExSup that's not an ExSubA is thrown.

} catch (ExSubB e) {

 // We never do this, even if an ExSubB is thrown.

} finally {

 // We always do this, even if no exception is thrown.

}

finally vs. code after try/catch
try {

 // do something

} catch(MyException e) {

 // handle exception

} finally {

 cleanUp();

}

try {

 // do something

} catch(MyException e) {

 // handle exception

}

cleanUp();

Even if there are return statements or exceptions thrown in the
try or catch blocks, the code in finally will be executed. That
isn’t the case with the code on the right-hand side.

Documenting Exceptions

/**

 * Return the mness of this object up to mlimit.

 * @param mlimit The max mity to be checked.

 * @return int The mness up to mlimit.

 * @throws MyException If the local alphabet has no m.

 */

public void m(int mlimit) throws MyException { ...

 if (...) throw new MyException ("oops!") { ...

 }

}

You need both:
the Javadoc comment is for human readers, and

the throws is for the compiler and for humans.

Both the reader and the compiler are checking that caller and callee
have consistent interfaces.

Let’s see in action...

