
CSC207H: Software Design

Interfaces & Collections
CSC207 Summer 2018

Abstract Classes

A class declared abstract:

may or may not have abstract methods (methods declared
without implementation)

can’t be initiated, but can be extended

A child class may implement some or all of the inherited
abstract methods.

If not all, it must be declared abstract.

If all, it’s not abstract and so can be instantiated.

2

CSC207H: Software Design

The Programming Interface

The "user" for almost all code is a programmer. That user
wants to know:

... what kinds of object your class represents

... what actions it can take (methods)

... what properties your object has (getter methods)

... what guarantees your methods and objects require and offer

... how they fail and react to failure

... what is returned and what errors are raised

3

CSC207H: Software Design

Interfaces
An interface is (usually) a class with no implementation.

It has just the method signatures and return types.
It guarantees capabilities.
It is like a contract between groups of programmers.

Example: java.util.List
"To be a List, here are the methods you must support.”

All interface methods are automatically public.

A class can be declared to implement an interface.
This means it defines a body for every method.
A class can implement 0 or more interfaces (but may

extend only 0 or 1 classes).

An interface may extend another interface.
4

CSC207H: Software Design

Interfaces vs abstract classes

● Neither can be instantiated
● Abstract classes can have fields

See more details below:

https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

CSC207H: Software Design

Collections in Java

Reference: https://www.javatpoint.com/collections-in-java

CSC207H: Software Design

Interfaces - Stack Example

Stacks have push, pop, and isEmpty methods. There are lots of
implementations — array, ArrayList, LinkedList, among others. We
can describe how all of them work using an interface.
/** A LIFO data structure. */
public interface Stack {
 /** Add o to the top of this Stack.
 * @param o The object to be pushed.
 */
 void push(Object o);
 /** Remove and return the top item of this Stack.
 * @return the former top item of the this Stack.
 */
 Object pop();
 /** Return the top item of this Stack.
 * @return the top item of the this Stack.
 */
 Object top();
 /** Return whether this Stack is empty. */
 boolean isEmpty();
}

7

push pop

First In, Last
Out

CSC207H: Software Design

A Stack implementation

/** A Stack with fixed capacity. */
public class ArrayStack implements Stack {
 /** The index of the top element in this Stack. Also the number. */
 private int top;
 /** contents[0 .. top-1] contains the elements in this Stack. */
 private Object[] contents;
 /** An ArrayStack with capacity for n elements. */
 public ArrayStack(int n) {
 contents = new Object[n];
 }
 /** Add o to the top. (Ignore that we might overflow.) */
 public void push(Object o) {
 contents[top++] = o;
 }
 /** Remove and return the top element of this Stack. */
 public Object pop() {
 return contents[--top]; // What if top is 0?
 }
 /** Return true iff this Stack is empty. */
 public boolean isEmpty() {
 return top == 0;
 }

8

CSC207H: Software Design

Using a Stack

You can’t create instances of interfaces. This is broken:

Stack s = new Stack(15);

But you can write methods that use an interface:

/**
 * Fill a stack with the integers 0 to n - 1 (inclusive),
 * with n - 1 at the top.
 * @param the Stack to fill
 * @param n the number of integers to put into the stack
 */
public static void fill(Stack s, int n) {
 for (int i = 0; i != n; i++) {
 s.push(new Integer(i));
 }
}

That function will work with any class that implements Stack.

9

CSC207H: Software Design

Queues (as an intro to generics)

Queue ops: enqueue, head, dequeue, size. Let’s also decide that all
items in a queue must be the same type.
/** A queue where all items must be of type T. */
public interface Queue<T> {
 /** Append o to me. */
 void enqueue(T o);
 /**
 * Return my front item.
 * Precondition: size() != 0.
 */
 T head();
 /**
 * Remove and return my front item.
 * Precondition: size() != 0.
 */
 T dequeue();
 /** Return my number of items. */
 int size();
}

1
0

enqueue dequeue
First In, First

Out

CSC207H: Software Design

Queues (as an intro to generics)

/** A queue where all items must be of type T. */
public class LinkedListQueue<T> implements Queue<T> {
 /** The items in me. Head is index 0, tail is index size() - 1. */
 private LinkedList<T> contents = new LinkedList<T>();
 @Override
 public void enqueue(T item) {
 contents.add(item);
 }
 @Override
 public T head() {
 return contents.get(0);
 }
 @Override
 public T dequeue() {
 return contents.removeFirst();
 }
 @Override
 public int size() {
 return contents.size();
 }
}

1
1

CSC207H: Software Design

Queues (as an intro to generics)

public class QueueDemo {
 public static void fill(Queue<Integer> queue, int num) {
 for (int i = 0; i != num; i++) {
 queue.enqueue(i);
 }
 }

 public static void main(String[] args) {
// Here is where we decide which Queue implementation to use.

 Queue<Integer> queue = new LinkedListQueue<>();
 fill(queue, 10);

System.out.println(queue);
 }

}

1
2

CSC207H: Software Design

Generics: naming conventions

The Java Language Specification recommends these
conventions for the names of type variables:

very short, preferably a single character

but evocative

all uppercase to distinguish them from class and interface
names

Specific suggestions:
 Maps: K, V
 Exceptions: X
 Nothing particular: T (or S, T, U or T1, T2, T3 for several)

More on this in future lectures

13

