
CSC207H: Software Design

Inheritance in Java
CSC207 Summer 2018

1

CSC207H: Software Design

Inheritance Hierarchy
• All classes form a tree called the inheritance hierarchy, with
Object at the root.

• Class Object does not have a parent. All other Java classes
have one parent.

• If a class has no parent declared, it is a child of class Object.

• A parent class can have multiple child classes.

• Class Object guarantees that every class inherits methods
toString, equals, and others.

2

CSC207H: Software Design

Inheritance
• Inheritance allows one class to inherit the data and

methods of another class.

• In a subclass, super refers to the part of the object
defined by the parent class.

• Use super.«attribute» to refer to an attribute
(data member or method) in the parent class.

• Use super(«arguments») to call a constructor
defined in the parent class.

3

CSC207H: Software Design

Multi-part objects
• Suppose class Child extends class Parent.

• An instance of Child has:

• a Child part, with all the data members and methods of
Child

• a Parent part, with all the data members and methods of
Parent

• a Grandparent part, … etc., all the way up to Object.

• An instance of Child can be used anywhere that a Parent is
legal.

• But not the other way around.

4

CSC207H: Software Design

Name Lookup
• A subclass can reuse a name already used for an inherited data member or

method.

• Example:

• class Person could have a data member motto and so could class
Student. Or they could both have a method with the signature sing().

• When we construct
 x = new Student();
the object has a Student part and a Person part.

• If we say x.motto or x.sing(), we need to know which one we’ll get!

• In other words, we need to know how Java will look up the name motto or
sing inside a Student object.

5

CSC207H: Software Design

Name Lookup Rules
• Calling a method: expression.method(arguments)

• Java looks for method in the most specific, or
bottom-most part of the object referred to by expression.

• If it’s not defined there, Java looks “upward” until it’s
found (else it’s an error).

• Referencing an instance variable: expression.variable

• Java determines the type of expression, and looks in that
box.

• If it’s not defined there, Java looks “upward” until it’s
found (else it’s an error).

6

CSC207H: Software Design

Shadowing and Overriding

• Suppose class A and its subclass AChild each have an
instance variable x and an instance method m.

• A’s m is overridden by Achild’s m.

• This is often a good idea. We often want to specialize
behaviour in a subclass.

• A’s x is shadowed by Achild’s x.

• This is confusing and rarely a good idea.

• If a method must not be overridden in a descendant,
declare it final.

7

CSC207H: Software Design

Casting for the
compiler

• If we could run this code, Java would find the charAt
method in o, since it refers to a String object:

Object o = new String(“hello”);
char c = o.charAt(1);

• But the code won’t compile because the compiler cannot
be sure it will find the charAt method in o.

• Remember: the compiler doesn’t run the code. It can
only look at the type of o.

• So we need to cast o as a String:

• char c = ((String) o).charAt(1);

8

