
CSC207 Practice Exam Questions

Last Modified: Sunday 12 August 2018

The exam will test a subset of the topics discussed in this practice exam. It will have fewer
questions with a different format.

Solutions will not be posted to these questions. Instead, we will be discussing the answers
during the last lecture of the semester. You can also discuss the solutions to these questions
on the message forum or in any office hours for this course, including:

Monday 13 August at 4-6pm – David (location BA 7172)
Tuesday 14 August at 5:30 - 6:30 pm – Lindsey (location BA 3201)
Thursday 16 August at 6-7 pm – Lindsey (location BA 5256)
Monday 20 August at 3-5 pm – Lindsey (location BA 5256)

Questions:

1. In order to run a java program, the computer must first compile the .java files to
create .class files. Then the Java Virtual Machine (JVM) runs the .class files.
After compilation, when the JVM first starts to run the program, what is created in
memory first?
When do instances of an object get created?
How long do they stay in memory?
Under what circumstances will the JVM delete an object from memory?

2. What are the main components of a class in Java? What are the standard accessi-
bility modifiers for each (e.g., protected, private, etc.)? When would you want to use
a non-standard accessibility modifier for a variable? for a method? for a constructor?

3. In what ways are methods similar to constructors? In what ways are they different?
(Consider: the syntax for coding each, how they show up in the Java memory model,
features such as calling other constructors, whether or not Java provides them by
default, returning values, the applicability of terms like “instance” and “static”, etc..)

4. Is it possible for a class to have more than one parent class? More than one child
class? To implement more than one interface?

5. In which ways are abstract classes and interfaces similar? In what ways are they
different? List the conditions which are necessary and sufficient for a: (a) class to be
declared abstract and (b) for a method to be abstract.

6. What do the following keywords mean when used in front of a method: final,
static, abstract.

1

7. List all of the primitive types.
How does the memory model reflect the differences between primitive types and ob-
jects?
When are two primitive variables “equal”? When are two objects “equal”?
What are the differences between == and the equals method?
Are all non-primitive types subclasses of the Object class? What features of class
Object did we use most frequently in the lectures, besides the equals method?

8. What do we mean by “casting”, “autoboxing”, and “wrapper class”. Compare and
contrast these terms.

9. Give four examples of subclasses of Collection in Java. Describe a different cir-
cumstance for each in which you would require the features of that particular type
of collection. For example, how and when would you use an ArrayList? How are
collections similar to arrays? How are they different? Is it possible to define a non-
generic subclass of Collection? Why or why not?

10. Write your own generic class and also write a second class in which you instantiate
the generic one. What does “instantiate mean”?

11. How did we use instances of each of the following classes in the code from Week 8:
Logger, Handler, Scanner, FileInputStream, BufferedInputStream, ObjectInputStream,
FileOutputStream, BufferedOutputStream, ObjectOutputStream.
What is Serializable and how can we use it to store information about instances
of class Student?

12. (Optional) Can you read Javadoc to figure out how to create a main method using
classes you have never seen before? In this exercise, you will use the Oracle web-
site to look up the following classes: JFrame, JPanel, BoxLayout, JCheckBox, and
ActionListener. The information on the website is generated from the Javadoc for
each class. Use it to write code that displays a JFrame with a panel of checkboxes
on it and another panel with an exit button, so that clicking the exit button closes
the JFrame.

2

13. In Week 5, you learned about Exceptions. Write a main method that tries to call a
different method that can throw an Exception. The method should be located in a
different class from main. Can you get your main method to:

(a) compile but not run to completion.
(b) compile and run, even though an exception is thrown.
(c) compile and run, but print the stack trace to the screen twice, at different parts

of the program. In other words, the two traces should describe different points
in the code.

(d) compile and run, even though an exception is thrown from inside a catch block.
(e) The file compiles but does not run. However, between the moment when the last

exception is thrown and the end of execution, the message “This is a message.”
appears on the screen.

14. We discussed the following design patterns in class: Iterator, Observer, Strategy,
MVC, Dependency Injection, and Factory Method. When would you want to use
each pattern? Describe a situation where the Iterator pattern would be useful. Do
that again for each of the other patterns. Describe an alternative solution to the
Observer pattern, the Iterator pattern, and to the Strategy pattern.

15. Demonstrate the lookup rules for Java by creating a parent class and child class that
each contain a static variable with the same name, instance variable with the same,
static method with the same signature and instance method with the same signature.
Let the parent class be called Parent and the child class be called Child. Include
the following lines in your main method:
Parent var1 = new Parent();

Parent var2 = new Child();

Child var3 = new Child();

Then try printing the value of each variable and the return value of each method for
var1, var2, and var3.
When does Java shadows (use the code from the parent class) and when does it over-
ride (use the code from the child class?

16. Try the questions in the “regex practice” file, on the website under Week 9. Also
try at least one Regular Expressions Crossword from regexcrossword.com.

17. What is a floating point variable? What examples of floating point issues have we
seen?

18. Complete an alternative set of CRC cards for the TicketVendor activity that we did
during lecture. Use as many design patterns as is appropriate. Looking at your cards,
is it possible to deduce where each class is instantiated? As the user, where is the
entry point into your program? If you move the main method, how does that impact
your design?

3

18. Pretend that you are trying to explain JUnit to someone who knows nothing about
it. What is an assertion? What does it mean to pass a test? What is the difference
between a fail and an error? What is a “unit test”?

19. What is version control? What do the following commands do?

git pull

git add

git commit

git push

Is this the correct order in which to use these commands? Are there circumstances
when you would use them in a different order?

20. Take a look at the UML diagram for your Phase 1. How much of that diagram has
changed? What major changes occurred between Phase 1 and Phase 2? For each
major change, why is the new design better than the previous? Did the change in-
volve implementing a design pattern? Does the new design follow any of the SOLID
principles better than your Phase 1 design?

21. Consider the code that starts on the next page. For each SOLID principle, ask the
question:

Does the code violate this principle?
If so, on which line(s)?
How can I fix the code so that it better implements this principle?

22. Consider the code that starts on the next page. Are there any design patterns that
can be used to improve or extend it?

23. In the code that starts on the next page, figure out what (if anything) is inherited
by each class.

24. How would you recognize each of the following, when looking at someone else’s code:
(a) Cyclomatic complexity
(b) Data clump
(c) Excessively long identifiers
(d) Duplicated code
(e) Shotgun surgery

4

public class Ticket {

private stat ic int numSales ;
private St r ing event ;
private St r ing buyer ;
private boolean i s F o r S a l e ;

public Ticket (S t r ing event , S t r ing buyer) {
this . event = event ;
this . buyer = buyer ;
i s F o r S a l e = fa l se ;
numSales++;

}

public void r e turnTicke t () {
buyer = ”” ;
i s F o r S a l e = true ;

}

public void s e l l T i c k e t (S t r ing buyer) {
this . buyer = buyer ;
i s F o r S a l e = fa l se ;
numSales++;

}

public St r ing toS t r i ng () {
return ” t h i s t i c k e t f o r ” + event + ” be longs to ” + buyer ;

}

public int getNumSales () {
return numSales ;

}
}

public class TrainTicket extends Ticket {

private St r ing fromCity ;
private St r ing toCity ;

public TrainTicket (S t r ing fromCity , S t r ing toCity , S t r ing buyer) {
super (” t r a i n r i d e ” , buyer) ;
this . fromCity = fromCity ;
this . toCity = toCity ;

5

}

public void r e turnTicke t () {
System . out . p r i n t l n (” This t i c k e t i s f o r s a l e again ”) ;

}

public St r ing getToCity () {
return toCity ;

}

public void setToCity (S t r ing toCity) {
this . toCity = toCity ;

}
}

public class TwoWayTrip {

private TrainTicket departTicket ;
private TrainTicket r e turnTicke t ;
private St r ing s tar tDate ;
private St r ing endDate ;

public TwoWayTrip(
S t r ing startDate , S t r ing endDate , S t r ing fromCity , S t r ing toCity ,

S t r ing buyer) {
departTicket = new TrainTicket (fromCity , toCity , buyer) ;
r e turnTicke t = new TrainTicket (toCity , fromCity , buyer) ;
this . s ta r tDate = star tDate ;
this . endDate = endDate ;

}

public void p r i n t I t i n e r a r y () {
System . out . p r i n t l n (” Sta r t date : ” + star tDate + ” , End date : ” + endDate) ;

}
}

6

