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Ariane 5 Rocket Launch



Ariane 5 rocket explosion
• In 1996, the European Space Agency’s Ariane 5 rocket 

exploded 40 seconds after launch. 

• During conversion of a 64-bit to a 16-bit format, overflow 
occurred: the number was too big to store in 16 bits. 

• This hadn’t been expected because the data (acceleration 
reported by sensors) had never been this large before.  But 
this new rocket was faster than its predecessor. 

• $7 billion of R&D had been invested in this rocket. 

• Reference:  
http://www.around.com/ariane.html



Example 1
• Perform some simple arithmetic, and check that the 

laws of mathematics hold. 

• Code: Adding.java



Is Java broken?

It’s not only Java.  Check this out in Python:  
       >>> x = 0.1  
    >>> sum = x + x + x  
    >>> sum == 0.3  
    False  
    >>> sum  
    0.30000000000000004  
    >>> bigger = 1.0  
    >>> s = 1.0e-6  
    >>> sum1 = s + s + s + s + s + s + s + s + s + s + bigger  
    >>> sum2 = bigger + s + s + s + s + s + s + s + s + s + s  
    >>> sum1 == sum2  
    False  
    >>> sum1  
    1.00001  
    >>> sum2  
    1.0000099999999992



Representing numbers
• It all makes sense if you understand how “real” 

numbers are represented. 

• First, consider an int like 42.  Hardware doesn’t 
directly represent 4s or 2s — everything is binary.   

• 42 =  
     1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20 

• So 42 can be represented by 101010 (base 2).



Representing fractions
• Fractions can be handled using the same approach. 

• Example: 0.4375 =  
   0 x 2-1 + 1 x 2-2 + 1 x 2-3 + 1 x 2-4  
   = 0/2 + 1/4 + 1/8 + 1/16 
   = 0.25 + 0.125 + 0.0625  
   = 0.4375 

• So we can represent 0.4375 using 0.0111 (base 2). 

• Another example: 0.1 =  
    0.000110011001100110011001100... 

• 0.1 does not have a finite binary representation



Some problem numbers
• You already know from math that some numbers do 

not have a finite representation. 

• Even worse, some numbers that have a finite 
representation in decimal do not in binary! 

• (Thought question: is the reverse true?) 

• Computer systems have finite memory. 
But we need to represent numbers that take an 
infinite number of bits. 

• Solution?



IEEE-754 Floating Point
• Like a binary version of scientific notation 
• 32 bits for a float (64 bits for a double) as follows:  

• 1 bit for the sign 
• 8 bits for the exponent e 
• 23 bits for the mantissa (significand) M



Allocation of 32 bits
• 1 bit for the sign: 1 for negative and 0 for positive 
• 8 bits for the exponent e 

• To allow for negative exponents, 127 is added to 
that exponent to get the representation. 
We say that the exponent is “biased” by 127. 

• So the range of possible exponents is  
not 0 to 28-1 = 0 to 255,  
but (0-127) to (255-127) = -127 to 128. 

• 23 bits for the mantissa M 
• Since the first bit must be 1, we don’t waste 

space storing it!



IEEE-754 Floating Point

exponent mantissasign

31 0

(-1)s * (1 + M) * 2e-127

s e M

222330





Rounding
• If we have to lose some digits, we don’t just 

truncate, we round. 

• In rounding a decimal to a whole number, an issue 
arises: If we have a 0.5, do we round up or down? 

• If we always round up, we are biasing towards 
higher values. 

• “Proper” rounding: round to the nearest even 
number. 
E.g., 17.5 is rounded up to 18 but 16.5 is rounded 
down to 16. 

• The IEEE standard uses proper rounding also.



Historical aside
• 30 years ago, computer manufacturers each had 

their own standard for floating point. 

• Problem? Writing portable software! 

• Advantage to manufacturers? Customers got locked 
in to their particular computers. 

• In the late 1980s, the IEEE produced the standard 
that now virtually all follow. 

• William Kahan spearheaded the effort, and won the 
1989 Turing Award for it.



Back to the example (Adding.java)

• As we saw, 0.1 cannot be represented exactly in 
binary, leading to the unexpected result. 

• And adding a very small quantity to a very large 
quantity can mean the smaller quantity falls off the 
end of the mantissa. 

• But if we add small quantities to each other, this 
doesn’t happen. 
And if they accumulate into a larger quantity, they 
may not be lost when we finally add the big 
quantity in.



Examples 2 and 3
• This seems contrived, but consider some value that 

accumulates in a loop. 

• Code: Totalling.java 

• Or consider adding up a list of doubles, what should 
you do? 

• Code: ArrayTotal.java



Lessons
• When adding floating point numbers, add the 

smallest first. 

• More generally, try to avoid adding dissimilar 
quantities.  

• Specific scenario: When adding a list of floating 
point numbers, sort them first.



Example 4
• Repeat a task for values in a particular range with 

an increment of 0.1. 

• For example, for values 0.1 to 0.5 with an 
increment of 0.1. 

• For example, for values 1.1 to 1.5 with an 
increment of 0.1. 

• Code: FunctionValues.java



Lessons
• Don’t use floating point variables to control what is 

essentially a counted loop. 

• Also: Notice that we wrote    
    x = 1.0 + i * 0.1;   
instead of initializing x to 1.0 and then repeatedly 
adding 0.1. 
Why?  Fewer total arithmetic operations means 
fewer rounding errors are introduced. 

• Use fewer arithmetic operations where possible.



Example 5
• A very simple program that just prints the same 

variable using different formats. 

• Code: Examine.java



What happened?
• We shouldn’t be surprised by now to find out that 4/5 can’t 

be represented exactly in a float.  Lots of things can’t. 

• But the represented value should be off by a tiny bit. 
What are all these extra digits?? 

• 4/5 = 1.1001100110011001100110011001100 ... x 2-1 

• It gets rounded to  
         1.10011001100110011001101 x 2-1 

• When we ask to print it as a decimal number, it gets 
converted. 
The exact equivalent is  
         0.800000011920928955078125000000 

• But only 7 of those digits are significant.  

bit 24



Lesson
• Don’t print more precision in your output than you 

are holding.



Why does this matter?



Patriot missile accident
• In 1991, an American missile failed to track and destroy 

an incoming missile.  Instead it hit a US Army barracks, 
killing 28. 

• The system tracked time in tenths of seconds.  The 
error in approximating 0.1 with 24 bits was magnified 
in its calculations. 

• At the time of the accident, the error corresponded to 
0.34 seconds.  A Patriot missile travels about half a km 
in that time. 

• Reference:  
http://www.ima.umn.edu/~arnold/disasters/
patriot.html



Sinking of an oil rig
• In 1992, the Sleipner A oil and gas platform sank in the 

North Sea near Norway. 

• Numerical issues in modelling the structure caused shear 
stresses to be underestimated by 47%. 

• As a result, concrete walls were not built thick enough. 

• Cost: $700 million 

• Reference:  
http://www.ima.umn.edu/~arnold/disasters/sleipner.html



What should you do?

“95% of folks out there are completely 
clueless about floating-point.” 

James Gosling



Follow the lessons
• Use double instead of float. 

• When adding floating point numbers, add the smallest 
first. 

• More generally, try to avoid adding dissimilar quantities.  

• Specific scenario: When adding a list of floating point 
numbers, sort them first. 

• Don’t use floating point variables to control what is 
essentially a counted loop.  

• Use fewer arithmetic operations where possible.  

• Don’t print more precision in your output than you are 
holding.



CSC336 Numerical 
Methods

• The study of computational methods for solving 
problems in linear algebra, non-linear equations, 
and approximation. The aim is to give students a 
basic understanding of both floating-point 
arithmetic and the implementation of algorithms 
used to solve numerical problems, as well as a 
familiarity with current numerical computing 
environments.


