Floating Point

 CSC207 Fall 2017
Ariane 5 Rocket Launch

Ariane 5 rocket explosion

- In 1996, the European Space Agency's Ariane 5 rocket exploded 40 seconds after launch.
- During conversion of a 64-bit to a 16-bit format, overflow occurred: the number was too big to store in 16 bits.
- This hadn't been expected because the data (acceleration reported by sensors) had never been this large before. But this new rocket was faster than its predecessor.
- $\$ 7$ billion of R\&D had been invested in this rocket.
- Reference: http://www.around.com/ariane.html

Example 1

- Perform some simple arithmetic, and check that the laws of mathematics hold.
- Code: Adding.java

Is Java broken?

It's not only Java. Check this out in Python:
$\ggg \mathrm{X}=0.1$
$\ggg \operatorname{sum}=x+x+x$
\ggg sum $==0.3$
False
\ggg sum
0.30000000000000004
>>> bigger $=1.0$
$\ggg s=1.0 e-6$
$\ggg \mathrm{sum} 1=\mathrm{s}+\mathrm{s}+\mathrm{s}+\mathrm{s}+\mathrm{s}+\mathrm{s}+\mathrm{s}+\mathrm{s}+\mathrm{s}+\mathrm{s}+\mathrm{b}$ bgger

\ggg sum1 $==$ sum2
False
\ggg suml
1.00001
\ggg sum2
1.0000099999999992

Representing numbers

- It all makes sense if you understand how "real" numbers are represented.
- First, consider an int like 42. Hardware doesn't directly represent 4 s or 2 s - everything is binary.
- $42=$

$$
1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}
$$

- So 42 can be represented by 101010 (base 2).

Representing fractions

- Fractions can be handled using the same approach.
- Example: $0.4375=$

$$
\begin{aligned}
& 0 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}+1 \times 2^{-4} \\
& =0 / 2+1 / 4+1 / 8+1 / 16 \\
& =0.25+0.125+0.0625 \\
& =0.4375
\end{aligned}
$$

- So we can represent 0.4375 using 0.0111 (base 2).
- Another example: $0.1=$
0.000110011001100110011001100...
- 0.1 does not have a finite binary representation

Some problem numbers

- You already know from math that some numbers do not have a finite representation.
- Even worse, some numbers that have a finite representation in decimal do not in binary!
- (Thought question: is the reverse true?)
- Computer systems have finite memory. But we need to represent numbers that take an infinite number of bits.
- Solution?

IEEE-754 Floating Point

- Like a binary version of scientific notation
- 32 bits for a float (64 bits for a double) as follows:
- 1 bit for the sign
- 8 bits for the exponent e
- 23 bits for the mantissa (significand) M

Allocation of 32 bits

- 1 bit for the sign: 1 for negative and 0 for positive
- 8 bits for the exponent e
- To allow for negative exponents, 127 is added to that exponent to get the representation. We say that the exponent is "biased" by 127.
- So the range of possible exponents is not 0 to $2^{8-1}=0$ to 255, but $(0-127)$ to $(255-127)=-127$ to 128 .
- 23 bits for the mantissa M
- Since the first bit must be 1 , we don't waste space storing it!

IEEE-754 Floating Point

$$
(-1)^{s} *(1+M) * 2 e-127
$$

$$
\begin{aligned}
& (-1)^{\text {sign }}\left(1+\sum_{i=1}^{23} b_{23-i} 2^{-i}\right) \times 2^{(e-127)} \\
& \cdot \operatorname{sign}=0 \\
& \quad \cdot 1+\sum_{i=1}^{23} b_{23-i} 2^{-i}=1+2^{-2}=1.25 \\
& \cdot 2^{(e-127)}=2^{124-127}=2^{-3}
\end{aligned}
$$

thus:

- value $=1.25 \times 2^{-3}=0.15625$

Rounding

- If we have to lose some digits, we don't just truncate, we round.
- In rounding a decimal to a whole number, an issue arises: If we have a 0.5 , do we round up or down?
- If we always round up, we are biasing towards higher values.
- "Proper" rounding: round to the nearest even number.
E.g., 17.5 is rounded up to 18 but 16.5 is rounded down to 16.
- The IEEE standard uses proper rounding also.

Historical aside

- 30 years ago, computer manufacturers each had their own standard for floating point.
- Problem? Writing portable software!
- Advantage to manufacturers? Customers got locked in to their particular computers.
- In the late 1980s, the IEEE produced the standard that now virtually all follow.
- William Kahan spearheaded the effort, and won the 1989 Turing Award for it.

Back to the example (Adding.java)

- As we saw, 0.1 cannot be represented exactly in binary, leading to the unexpected result.
- And adding a very small quantity to a very large quantity can mean the smaller quantity falls off the end of the mantissa.
- But if we add small quantities to each other, this doesn't happen.
And if they accumulate into a larger quantity, they may not be lost when we finally add the big quantity in.

Examples 2 and 3

- This seems contrived, but consider some value that accumulates in a loop.
- Code: Totalling.java
- Or consider adding up a list of doubles, what should you do?
- Code: ArrayTotal.java

Lessons

- When adding floating point numbers, add the smallest first.
- More generally, try to avoid adding dissimilar quantities.
- Specific scenario: When adding a list of floating point numbers, sort them first.

Example 4

- Repeat a task for values in a particular range with an increment of 0.1.
- For example, for values 0.1 to 0.5 with an increment of 0.1.
- For example, for values 1.1 to 1.5 with an increment of 0.1.
- Code: FunctionValues.java

Lessons

- Don't use floating point variables to control what is essentially a counted loop.
- Also: Notice that we wrote

$$
x=1.0+i \text { * } 0.1 ;
$$

instead of initializing x to 1.0 and then repeatedly adding 0.1.
Why? Fewer total arithmetic operations means fewer rounding errors are introduced.

- Use fewer arithmetic operations where possible.

Example 5

- A very simple program that just prints the same variable using different formats.
- Code: Examine.java

What happened?

- We shouldn't be surprised by now to find out that $4 / 5$ can't be represented exactly in a float. Lots of things can't.
- But the represented value should be off by a tiny bit. What are all these extra digits??
- $4 / 5=1.1001100110011001100110011001100 \ldots \times 2^{-1}$
- It gets rounded to

$$
1.10011001100110011001101 \times 2^{-1}
$$

- When we ask to print it as a decimal number, it gets converted.
The exact equivalent is

$$
0.800000011920928955078125000000
$$

- But only 7 of those digits are significant.

Lesson

- Don't print more precision in your output than you are holding.

Why does this matter?

Patriot missile accident

- In 1991, an American missile failed to track and destroy an incoming missile. Instead it hit a US Army barracks, killing 28.
- The system tracked time in tenths of seconds. The error in approximating 0.1 with 24 bits was magnified in its calculations.
- At the time of the accident, the error corresponded to 0.34 seconds. A Patriot missile travels about half a km in that time.
- Reference:
http://www.ima.umn.edu/~arnold/disasters/ patriot.html

Sinking of an oil rig

- In 1992, the Sleipner A oil and gas platform sank in the North Sea near Norway.
- Numerical issues in modelling the structure caused shear stresses to be underestimated by 47%.
- As a result, concrete walls were not built thick enough.
- Cost: $\$ 700$ million
- Reference:
http://www.ima.umn.edu/~arnold/disasters/sleipner.html

What should you do?

" 95% of folks out there are completely
clueless about floating-point."
James Gosling

Follow the lessons

- Use double instead of float.
- When adding floating point numbers, add the smallest first.
- More generally, try to avoid adding dissimilar quantities.
- Specific scenario: When adding a list of floating point numbers, sort them first.
- Don't use floating point variables to control what is essentially a counted loop.
- Use fewer arithmetic operations where possible.
- Don't print more precision in your output than you are holding.

CSC336 Numerical Methods

- The study of computational methods for solving problems in linear algebra, non-linear equations, and approximation. The aim is to give students a basic understanding of both floating-point arithmetic and the implementation of algorithms used to solve numerical problems, as well as a familiarity with current numerical computing environments.

