
Floating Point
CSC207 Fall 2017

Ariane 5 Rocket Launch

Ariane 5 rocket explosion
• In 1996, the European Space Agency’s Ariane 5 rocket

exploded 40 seconds after launch.

• During conversion of a 64-bit to a 16-bit format, overflow
occurred: the number was too big to store in 16 bits.

• This hadn’t been expected because the data (acceleration
reported by sensors) had never been this large before. But
this new rocket was faster than its predecessor.

• $7 billion of R&D had been invested in this rocket.

• Reference:  
http://www.around.com/ariane.html

Example 1
• Perform some simple arithmetic, and check that the

laws of mathematics hold.

• Code: Adding.java

Is Java broken?

It’s not only Java. Check this out in Python:  
 >>> x = 0.1  
 >>> sum = x + x + x  
 >>> sum == 0.3  
 False  
 >>> sum  
 0.30000000000000004  
 >>> bigger = 1.0  
 >>> s = 1.0e-6  
 >>> sum1 = s + s + s + s + s + s + s + s + s + s + bigger  
 >>> sum2 = bigger + s + s + s + s + s + s + s + s + s + s  
 >>> sum1 == sum2  
 False  
 >>> sum1  
 1.00001  
 >>> sum2  
 1.0000099999999992

Representing numbers
• It all makes sense if you understand how “real”

numbers are represented.

• First, consider an int like 42. Hardware doesn’t
directly represent 4s or 2s — everything is binary.

• 42 =  
 1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20

• So 42 can be represented by 101010 (base 2).

Representing fractions
• Fractions can be handled using the same approach.

• Example: 0.4375 =  
 0 x 2-1 + 1 x 2-2 + 1 x 2-3 + 1 x 2-4  
 = 0/2 + 1/4 + 1/8 + 1/16 
 = 0.25 + 0.125 + 0.0625  
 = 0.4375

• So we can represent 0.4375 using 0.0111 (base 2).

• Another example: 0.1 =  
 0.000110011001100110011001100...

• 0.1 does not have a finite binary representation

Some problem numbers
• You already know from math that some numbers do

not have a finite representation.

• Even worse, some numbers that have a finite
representation in decimal do not in binary!

• (Thought question: is the reverse true?)

• Computer systems have finite memory. 
But we need to represent numbers that take an
infinite number of bits.

• Solution?

IEEE-754 Floating Point
• Like a binary version of scientific notation
• 32 bits for a float (64 bits for a double) as follows:

• 1 bit for the sign
• 8 bits for the exponent e
• 23 bits for the mantissa (significand) M

Allocation of 32 bits
• 1 bit for the sign: 1 for negative and 0 for positive
• 8 bits for the exponent e

• To allow for negative exponents, 127 is added to
that exponent to get the representation. 
We say that the exponent is “biased” by 127.

• So the range of possible exponents is  
not 0 to 28-1 = 0 to 255,  
but (0-127) to (255-127) = -127 to 128.

• 23 bits for the mantissa M
• Since the first bit must be 1, we don’t waste

space storing it!

IEEE-754 Floating Point

exponent mantissasign

31 0

(-1)s * (1 + M) * 2e-127

s e M

222330

Rounding
• If we have to lose some digits, we don’t just

truncate, we round.

• In rounding a decimal to a whole number, an issue
arises: If we have a 0.5, do we round up or down?

• If we always round up, we are biasing towards
higher values.

• “Proper” rounding: round to the nearest even
number. 
E.g., 17.5 is rounded up to 18 but 16.5 is rounded
down to 16.

• The IEEE standard uses proper rounding also.

Historical aside
• 30 years ago, computer manufacturers each had

their own standard for floating point.

• Problem? Writing portable software!

• Advantage to manufacturers? Customers got locked
in to their particular computers.

• In the late 1980s, the IEEE produced the standard
that now virtually all follow.

• William Kahan spearheaded the effort, and won the
1989 Turing Award for it.

Back to the example (Adding.java)

• As we saw, 0.1 cannot be represented exactly in
binary, leading to the unexpected result.

• And adding a very small quantity to a very large
quantity can mean the smaller quantity falls off the
end of the mantissa.

• But if we add small quantities to each other, this
doesn’t happen. 
And if they accumulate into a larger quantity, they
may not be lost when we finally add the big
quantity in.

Examples 2 and 3
• This seems contrived, but consider some value that

accumulates in a loop.

• Code: Totalling.java

• Or consider adding up a list of doubles, what should
you do?

• Code: ArrayTotal.java

Lessons
• When adding floating point numbers, add the

smallest first.

• More generally, try to avoid adding dissimilar
quantities.

• Specific scenario: When adding a list of floating
point numbers, sort them first.

Example 4
• Repeat a task for values in a particular range with

an increment of 0.1.

• For example, for values 0.1 to 0.5 with an
increment of 0.1.

• For example, for values 1.1 to 1.5 with an
increment of 0.1.

• Code: FunctionValues.java

Lessons
• Don’t use floating point variables to control what is

essentially a counted loop.

• Also: Notice that we wrote  
 x = 1.0 + i * 0.1;  
instead of initializing x to 1.0 and then repeatedly
adding 0.1. 
Why? Fewer total arithmetic operations means
fewer rounding errors are introduced.

• Use fewer arithmetic operations where possible.

Example 5
• A very simple program that just prints the same

variable using different formats.

• Code: Examine.java

What happened?
• We shouldn’t be surprised by now to find out that 4/5 can’t

be represented exactly in a float. Lots of things can’t.

• But the represented value should be off by a tiny bit. 
What are all these extra digits??

• 4/5 = 1.1001100110011001100110011001100 ... x 2-1

• It gets rounded to  
 1.10011001100110011001101 x 2-1

• When we ask to print it as a decimal number, it gets
converted. 
The exact equivalent is  
 0.800000011920928955078125000000

• But only 7 of those digits are significant.  

bit 24

Lesson
• Don’t print more precision in your output than you

are holding.

Why does this matter?

Patriot missile accident
• In 1991, an American missile failed to track and destroy

an incoming missile. Instead it hit a US Army barracks,
killing 28.

• The system tracked time in tenths of seconds. The
error in approximating 0.1 with 24 bits was magnified
in its calculations.

• At the time of the accident, the error corresponded to
0.34 seconds. A Patriot missile travels about half a km
in that time.

• Reference:  
http://www.ima.umn.edu/~arnold/disasters/
patriot.html

Sinking of an oil rig
• In 1992, the Sleipner A oil and gas platform sank in the

North Sea near Norway.

• Numerical issues in modelling the structure caused shear
stresses to be underestimated by 47%.

• As a result, concrete walls were not built thick enough.

• Cost: $700 million

• Reference:  
http://www.ima.umn.edu/~arnold/disasters/sleipner.html

What should you do?

“95% of folks out there are completely
clueless about floating-point.”

James Gosling

Follow the lessons
• Use double instead of float.

• When adding floating point numbers, add the smallest
first.

• More generally, try to avoid adding dissimilar quantities.

• Specific scenario: When adding a list of floating point
numbers, sort them first.

• Don’t use floating point variables to control what is
essentially a counted loop.

• Use fewer arithmetic operations where possible.

• Don’t print more precision in your output than you are
holding.

CSC336 Numerical
Methods

• The study of computational methods for solving
problems in linear algebra, non-linear equations,
and approximation. The aim is to give students a
basic understanding of both floating-point
arithmetic and the implementation of algorithms
used to solve numerical problems, as well as a
familiarity with current numerical computing
environments.

